# Losses in DC Machine

As we know “Energy neither can be created nor it can be destroyed, it can only be transferred from one form to another”. In DC machine, mechanical energy is converted into the electrical energy. During this process, the total input power is not transformed into output power. Some part of input power gets wasted in various forms. The form of this loss may vary from one machine to another. These losses give in rise in temperature of machine and reduce the efficiency of the machine. In

Where, I

These losses are about 30% of the total full load losses.

Where, I

These losses are about 25% theoretically, but practically it is constant.

P = Number of poles

N = Speed in rpm

η = Steinmetz hysteresis co-efficient

B

F = Frequency of magnetic reversals

V = Volume of armature in m

**DC Machine**, there are broadly four main categories of energy loss.## Copper Losses or Electrical Losses in DC Machine or Winding Loss

The copper losses are the winding losses taking place during the current flowing through the winding. These losses occur due to the resistance in the winding. In DC machine, there are only two winding, armature and field winding.Thus copper losses categories in three parts; armature loss, field winding loss, and brush contact resistance loss. The copper losses are proportional to square of the current flowing through the winding.

### Armature Copper Loss in DC Machine

Armature copper loss = I_{a}^{2}R_{a}Where, I

_{a}is armature current and R_{a}is armature resistance.These losses are about 30% of the total full load losses.

### Field Winding Copper Loss in DC Machine

Field winding copper loss = I_{f}^{2}R_{f}Where, I

_{f}is field current and R_{f}is field resistance.These losses are about 25% theoretically, but practically it is constant.

### Brush Contact Resistance Loss in DC Machine

Brush contact loss attributes to resistance between the surface of brush and commutator. It is not a loss which could be calculated separately as it is a part of variable losses. Generally, it contributes in both the types of copper losses. So, they are factor in the calculation of above losses.## Core Losses or Iron Losses in DC Machine or Magnetic Losses

As iron core of the armature is rotating in magnetic field, some losses occurs in the core which is called core losses. Normally, machines are operated with constant speed, so these losses are almost constant. These losses are categorized in two form; Hysteresis loss and Eddy current loss.### Hysteresis Loss in DC Machine

Hysteresis losses occur in the armature winding due to reversal of magnetization of the core. When the core of the armature exposed to magnetic field, it undergoes one complete rotation of magnetic reversal. The portion of armature which is under S-pole, after completing half electrical revolution, the same piece will be under the N-pole, and the magnetic lines are reversed in order to overturn the magnetism within the core. The constant process of magnetic reversal in the armature, consume some amount of energy which is called hysteresis loss. The percentage of loss depends upon the quality and volume of the iron.#### The Frequency of Magnetic Reversal

Where,P = Number of poles

N = Speed in rpm

#### Steinmetz Formula

The Steinmetz formula is for the calculation of hysteresis loss. Where,η = Steinmetz hysteresis co-efficient

B

_{max}= Maximum flux Density in armature windingF = Frequency of magnetic reversals

V = Volume of armature in m

^{3}.### Eddy Current Loss in DC Machine

According to Faraday’s law of electromagnetic induction, when an iron core rotates in the magnetic field, an emf is also induced in the core. Similarly, when armature rotates in magnetic field, small amount of emf induced in the core which allows flow of charge in the body due to conductivity of the core. This current is useless for the machine. This loss of current is called eddy current. This loss is almost constant for the DC machines. It could be minimized by selecting the laminated core.## Mechanical Losses in DC Machine

The losses associated with mechanical friction of the machine are called mechanical losses. These losses occur due to friction in the moving parts of the machine like bearing, brushes etc, and windage losses occurs due to the air inside the rotating coil of the machine. These losses are usually very small about 15% of full load loss.## Stray Load Losses in DC Machine

There are some more losses other than the losses which have been discussed above. These losses are called stray-load losses. These miscellaneous losses are due to the short-circuit current in the coil undergoing commutation, distortion of flux due to armature and many more losses which are difficult to find. These losses are difficult to determine. However, they are taken as 1% of the whole load power output.**Comments/Feedbacks**

Closely Related Articles DC Motor or Direct Current MotorSpeed Regulation of DC MotorSpeed Control of DC MotorWorking or Operating Principle of DC MotorTorque Equation of DC MotorConstruction of DC Motor | Yoke Poles Armature Field Winding Commutator Brushes of DC MotorTesting of DC MachineSwinburne Test of DC MachineWard Leonard Method of Speed ControlArmature Reaction in DC MachineCommutation in DC Machine or Commutation in DC Generator or MotorMethods of Improving CommutationStarting Methods to limit Starting Current and Torque of DC Motor3 Point Starter | Working Principle and Construction of Three Point Starter4 Point Starter | Working Principle and Construction of Four Point StarterMore Related Articles Electrical Motor | Types Classification and History of MotorWorking of Electric MotorTypes of DC Motor Separately Excited Shunt Series Compound DC MotorShunt Wound DC Motor | DC Shunt MotorSeries Wound DC Motor or DC Series MotorCompound Wound DC Motor or DC Compound MotorPermanent Magnet DC Motor or PMDC Motor | Working Principle ConstructionBrushless DC MotorsNew Articles System EarthingArc Suppression Coil or Petersen CoilWinding Resistance Test of Shunt ReactorMeasurement of Reactance of a Shunt ReactorTests of Shunt Reactor