# Digital Encoder or Binary Encoder

When we insert any character or symbol to a digital system, through key board, it is needed to be encoded in machine readable farm. Digital systems like computer etc, cannot read the characters or symbol directly. The system reads and computes any characters, numbers and symbols in their digital form. An encoder does the job that means, it converts different human readable characters or symbol to their equivalent digital format. An encoder is basically multi inputs and multi outputs digital logic circuit, which has as many inputs as the number of character to be encoded and as many outputs as the number of bits in encoded form of characters. Suppose we have to design an encoder which will encode 10 characters ( from 0 to 9 ). The encoded form of each character would be 4 bit binary equivalent. Then the encoder will have 10 numbers of input lines and each for one character. There will be four output lines to represent 4 bit encoded form of each input character.
Similarly for encoding M numbers of characters in N bit format, we need M input N output

Closely Related Articles
Binary Adder Half and Full AdderBinary SubstractorSeven Segment DisplayBinary to Gray Code Converter and Grey to Binary Code ConverterBinary to BCD Code ConverterAnalog to Digital ConverterBinary DecoderBasic Digital CounterDigital ComparatorBCD to Seven Segment DecoderParallel AdderParallel Adder or SubtractorMultiplexerDemultiplexer555 Timer and 555 Timer WorkingMore Related Articles
Digital ElectronicsBoolean Algebra Theorems and Laws of Boolean AlgebraDe Morgan Theorem and Demorgans LawsTruth Tables for Digital LogicBinary Arithmetic Binary AdditionBinary SubtractionSimplifying Boolean Expression using K MapBinary DivisionExcess 3 Code Addition and SubtractionK Map or Karnaugh MapSwitching Algebra or Boolean AlgebraBinary MultiplicationParallel SubtractorOR Operation | Logical OR OperationAND Operation | Logical AND OperationLogical OR GateLogical AND GateNOT GateUniversal Gate | NAND and NOR Gate as Universal GateNAND GateDiode and Transistor NAND Gate or DTL NAND Gate and NAND Gate ICsX OR Gate and X NOR GateTransistor Transistor Logic or TTLNOR GateFan out of Logic GatesINHIBIT GateNMOS Logic and PMOS LogicSchmitt GatesLogic Families Significance and Types of Logic FamiliesBinary Number System | Binary to Decimal and Decimal to Binary ConversionBinary to Decimal and Decimal to Binary ConversionBCD or Binary Coded Decimal | BCD Conversion Addition SubtractionBinary to Octal and Octal to Binary ConversionOctal to Decimal and Decimal to Octal ConversionBinary to Hexadecimal and Hex to Binary ConversionHexadecimal to Decimal and Decimal to Hexadecimal ConversionGray Code | Binary to Gray Code and that to Binary ConversionOctal Number SystemDigital Logic Gates2′s Complement1′s ComplementASCII CodeHamming Code2s Complement ArithmeticError Detection and Correction Codes9s complement and 10s complement | SubtractionSome Common Applications of Logic GatesKeyboard EncoderAlphanumeric codes | ASCII code | EBCDIC code | UNICODELatches and Flip FlopsS R Flip Flop S R LatchActive Low S R Latch and Flip FlopGated S R Latches or Clocked S R Flip FlopsD Flip Flop or D LatchJ K Flip FlopMaster Slave Flip FlopRead Only Memory | ROMProgrammable Logic DevicesProgrammable Array LogicApplication of Flip FlopsShift RegistersBuffer Register and Controlled Buffer RegisterData Transfer in Shift RegistersSerial In Serial Out (SISO) Shift RegisterSerial in Parallel Out (SIPO) Shift RegisterParallel in Serial Out (PISO) Shift RegisterParallel in Parallel Out (PIPO) Shift RegisterUniversal Shift RegistersBidirectional Shift RegisterDynamic Shift RegisterApplications of Shift RegistersUninterruptible Power Supply | UPSConversion of Flip FlopsNew Articles
Water MeterAir MeterDigital PotentiometersBasic Construction of Wind TurbineCharacteristics of Sensors**digital encoder**.In encoder normally, the input of which encoding to be done, is made high, other all inputs remain low at that time. That means a digital encoder works on active high input.
To understand about a **digital encoder** let us design the above decimal to binary encodes. The truth table for 10 inputs 4 output encoder would be,
From truth table it is found, that output A would be high at D_{8}, D_{9}.
So, it can be written
From above 4 equations the logic circuit drawn as follows,
Figure:3
This circuit can also be considered as Decimal to BCD encoder.

## Octal to Binary Encoder

The octal numbers system has bas of 8. Hence the number of digits used in octal system is 8 and the octal digits are 0 to 7. Hence, there will be eight input line in a basic Octal to**binary encoder**. As binary equivalent of numbers 0 to 7 can be represented by only three binary bits, there will be three output lines to represent bits of binary equivalent of octal number. The truth table logical relations between inputs and outputs and corresponding logic circuit are shown as follows,Octal Digit | Binary Equivalent | ||

A | B | C | |

D_{0} → 0 | 0 | 0 | 0 |

D_{1} → 1 | 0 | 0 | 1 |

D_{2} → 2 | 0 | 1 | 0 |

D_{3} → 3 | 0 | 1 | 1 |

D_{4} → 4 | 1 | 0 | 0 |

D_{5} → 5 | 1 | 0 | 1 |

D_{6} → 6 | 1 | 1 | 0 |

D_{7} → 7 | 1 | 1 | 1 |