# Binary Arithmetic

In binary number system there are only 2 digits 0 and 1, and any number can be represented by these two digits. The

Closely Related Articles
Digital ElectronicsBoolean Algebra Theorems and Laws of Boolean AlgebraDe Morgan Theorem and Demorgans LawsTruth Tables for Digital LogicBinary AdditionBinary SubtractionSimplifying Boolean Expression using K MapBinary DivisionExcess 3 Code Addition and SubtractionK Map or Karnaugh MapSwitching Algebra or Boolean AlgebraBinary MultiplicationParallel SubtractorMore Related Articles
Binary Adder Half and Full AdderBinary SubstractorSeven Segment DisplayBinary to Gray Code Converter and Grey to Binary Code ConverterBinary to BCD Code ConverterAnalog to Digital ConverterDigital Encoder or Binary EncoderBinary DecoderBasic Digital CounterDigital ComparatorBCD to Seven Segment DecoderParallel AdderParallel Adder or SubtractorMultiplexerDemultiplexer555 Timer and 555 Timer WorkingOR Operation | Logical OR OperationAND Operation | Logical AND OperationLogical OR GateLogical AND GateNOT GateUniversal Gate | NAND and NOR Gate as Universal GateNAND GateDiode and Transistor NAND Gate or DTL NAND Gate and NAND Gate ICsX OR Gate and X NOR GateTransistor Transistor Logic or TTLNOR GateFan out of Logic GatesINHIBIT GateNMOS Logic and PMOS LogicSchmitt GatesLogic Families Significance and Types of Logic FamiliesBinary Number System | Binary to Decimal and Decimal to Binary ConversionBinary to Decimal and Decimal to Binary ConversionBCD or Binary Coded Decimal | BCD Conversion Addition SubtractionBinary to Octal and Octal to Binary ConversionOctal to Decimal and Decimal to Octal ConversionBinary to Hexadecimal and Hex to Binary ConversionHexadecimal to Decimal and Decimal to Hexadecimal ConversionGray Code | Binary to Gray Code and that to Binary ConversionOctal Number SystemDigital Logic Gates2′s Complement1′s ComplementASCII CodeHamming Code2s Complement ArithmeticError Detection and Correction Codes9s complement and 10s complement | SubtractionSome Common Applications of Logic GatesKeyboard EncoderAlphanumeric codes | ASCII code | EBCDIC code | UNICODELatches and Flip FlopsS R Flip Flop S R LatchActive Low S R Latch and Flip FlopGated S R Latches or Clocked S R Flip FlopsD Flip Flop or D LatchJ K Flip FlopMaster Slave Flip FlopRead Only Memory | ROMProgrammable Logic DevicesProgrammable Array LogicApplication of Flip FlopsShift RegistersBuffer Register and Controlled Buffer RegisterData Transfer in Shift RegistersSerial In Serial Out (SISO) Shift RegisterSerial in Parallel Out (SIPO) Shift RegisterParallel in Serial Out (PISO) Shift RegisterParallel in Parallel Out (PIPO) Shift RegisterUniversal Shift RegistersBidirectional Shift RegisterDynamic Shift RegisterApplications of Shift RegistersUninterruptible Power Supply | UPSConversion of Flip FlopsNew Articles
Water MeterAir MeterDigital PotentiometersBasic Construction of Wind TurbineCharacteristics of Sensors**arithmetic of binary numbers**means the operation of addition, subtraction, multiplication and division.**Binary arithmetic**operation starts from the least significant bit i.e. from the right most side. We will discuss the different operations one by one in the following article.## Binary Addition

There are four steps in binary addition, they are written below- 0 + 0 = 0
- 0 + 1 = 1
- 1 + 0 = 1
- 1 + 1 = 0 (carry 1 to the next significant bit)

**binary arithmetic**clearly explains the binary addition operation, the carried 1 is shown on the upper side of the operands.## Binary Subtraction

Here are too four simple steps to keep in memory- 0 - 0 = 0
- 0 - 1 = 1, borrow 1 from the next more significant bit
- 1 - 0 = 1
- 1 - 1 = 0

## Binary Multiplication

Here are also four steps to be followed, which are- 0×0=0
- 1×0=0
- 0×1=0
- 1×1=1 (there is no carry or borrow for this)