What is photovoltaic effect?

The effect due to which light energy is converted to electric energy in certain semiconductor materials is known as photovoltaic effect. This directly converts light energy to electricity without any intermediate process. For demonstrating the photovoltaic effect let us assume a block of silicon crystal. The upper portion of this block is doped with donor impurities and lower portion is doped with accept or impurities. Hence the concentration of free electrons is quite high in n – type region compared to p-type region and concentration of hole is quite high in p-type region compared to n-type region of the block. There will be a high concentration gradient of charge carriers across the junction line of the block. Free electrons from n-type region try to diffuse to p-type region and holes in p-type region try to diffuse to n-type region in the crystal. This is because charge carriers by nature always tend to diffuse from high concentration region to low concentration region. Each free electron of n-type region while comes to the p-type region due to diffusion, it leaves a positive donor ion behind it in the n-type region.

This is because each of the free electron in n-type region is contributed by one neutral donor atom. Similarly when a hole is diffused from p-type region to n-type region, it leaves a negative accept or ion behind it in p-type region. electrons and holes diffusion across p-n junction Since each hole is contributed by one acceptor atom in p-type region. Both of these ions i.e. donor ions and acceptor ions are immobile and fixed at their position in crystal structure. It is needless to say that those free electrons of n-type region which are nearest to the p-type region first diffuse in the p-type region consequently create a layer of positive immobile donor ions in the n-type region adjacent to the junction. p-n junction Similarly those free holes of p-type region which are nearest to the n-type region first diffuse in the n-type region consequently create a layer of negative immobile acceptor ions in the p-type region adjacent to the junction. These positive and negative ions concentration layer creates an electric field across the junction which is directed from positive to negative that in from n-type side to p-type side. Now due to presence of this electric field charge carriers in the crystal experience a force to drift according to the direction of this electric field. As we know the positive charge always drift in the direction of electric field hence the positively charged holes (if any) in n-type region now drift to the p-side of the junction.

On the other hand, negatively charged electrons in p-type region (if any) drift to n-region as negative charge always drift opposite to the direction of electric field. Across a p-n junction diffusion and drift of charge carriers continues. Diffusion of charge carriers creates and increases the thickness of the potential barrier across the junction and drift of the charge carriers reduces the thickness of the barrier. In normal thermal equilibrium condition and in absence of any external force, the diffusion of charge carrier is equal and opposite of drift of charge carriers hence the thickness of potential barrier remains fixed. photovoltaic effect Now the n-type surface of the silicon crystal block is exposed to the sunlight. Some of the photons are absorbed by the silicon block. Some of the absorbed photon will have energy greater than the energy gap between valence and conduction band of valence electrons of the silicon atoms. Hence, some of the valence electrons in the covalent bond will be excited and jump out from the bond leaving behind a hole in the bond. In this way electron-hole pairs are generated in the crystal due to incident light. The holes of these light generated electron-hole pairs in the n-type side have enough probability of recombination with enormous electrons (majority carriers). Hence, solar cell is so designed, that the light- generated electrons or holes will not get enough chances to recombine with majority carriers.

The semiconductor (silicon) is so doped that the p-n junction forms in very close vicinity of exposed surface of the cell. If an electron hole pair is created within one minority carrier diffusion length, of the junction, the electrons of electron-hole pair will drift toward n-type region and hole of the pair will swept to p region due to in influence of electric field of the junction and hence on the average, it will contribute to current flow in an external circuit.

Closely Related Articles Solar ElectricitySolar Energy System | History of Solar EnergyTypes of Solar Power StationComponents of a Solar Electric Generating SystemStaebler Wronski EffectWorking Principle of Photovoltaic Cell or Solar CellSolar CellCharacteristics of a Solar Cell and Parameters of a Solar CellSolar Cell Manufacturing TechnologyWhat is a Solar PV Module?What is Standalone Solar Electric System?Solar LanternMore Related Articles Steam Boiler | Working principle and Types of BoilerMethods of Firing Steam BoilerFire Tube Boiler | Operation and Types of Fire Tube BoilerWater Tube Boiler | Operation and Types of Water Tube BoilerSteam Boiler Furnace Grate Firebox Combustion Chamber of FurnaceFeed Water and Steam Circuit of BoilerBoiler Feed Water Treatment Demineralization Reverse Osmosis Plant DeaeratorCoal Combustion TheoryFluidized Bed Combustion | Types and Advantages of Fluidized Bed CombustionSteam Condenser of TurbineJet Condenser | Low Level High Level Ejector Jet CondenserSurface Steam Condenser Economics of Power GenerationCooling Tower Useful Terms and Cooling Tower PerformanceCooling Tower Material and Main ComponentsPower Plant Fire Protection SystemHydrant System for Power Plant Fire ProtectionMedium Velocity Water Spray or MVWS System for Fire ProtectionFoam Fire Protection SystemFire Detection and Alarm SystemGas Extinguishing SystemElectric Power GenerationPower Plants and Types of Power PlantThermal Power Generation Plant or Thermal Power StationHydro Power Plant | Construction Working and History of Hydro power plantNuclear Power Station or Nuclear Power PlantDiesel Power StationWhy Supply Frequency is 50 Hz or 60 Hz?Economiser in Thermal Power Plant | EconomiserMHD Generation or Magneto Hydro Dynamic Power Generation Cogeneration | Combined Heat and PowerThermoelectric Power Generators or Seebeck Power GenerationCost of Electrical EnergyGas Turbine Power PlantNuclear ReactorSteamSteam Dryness FractionSuperheated Steam and Steam Phase DiagramVapour Properties Mollier Chart Heat CapacitiesWhat is Steam Flashing?How to Calculate Steam Consumption During Plant Start Up Effective Steam Distribution SystemWhat is Water Hammer?Engineering Thermodynamics Part 1Science of Engineering Thermodynamics Part 2Basic Law of Conservation and First Law of Thermodynamics Carnot Cycle and Reversed Carnot CycleEnthalpy Entropy and Second Law of ThermodynamicsRankine CycleRankine Cycle and Regenerative Feed HeatingRankine Cycle for Closed Feed Water Heaters and Rankine Cycle CogenerationIdeal Verses Actual Rankine CycleRankine Cycle Efficiency Improvement TechniquesWind Energy Electricity GenerationTheory of Wind Turbine Wind Turbine | Working and Types of Wind TurbineBasic Construction of Wind TurbineNew Articles Electrical and Electronics Engineering BooksWater MeterAir MeterDigital PotentiometersBasic Construction of Wind Turbine