ONLINE ELECTRICAL ENGINEERING STUDY SITE

Voltage in Series

Series circuit or series connection means when two or further electrical components are linked together in a chain like arrangement within a circuit. In this kind of circuit, there is only a single way for the charge to pass throughout the external circuit. The potential variation in charge across two points in an electrical circuit is termed as voltage. In this article, we can discuss in detail about the voltage in the series circuits.

The battery of a circuit provides energy for the charge to pass through the battery and to create a potential difference among the ends of the external circuit. Now, if we assume a cell of 2 volts, it will create a potential difference of 2 volts across the external circuit. The electric potential value at positive terminal is 2 volts greater than the negative terminal. So, when charge flows from the positive to negative terminal, it causes a loss of 2 volts in electrical potential. This is termed as voltage drop. This happens when the electrical energy of the charge is converted into some other forms (mechanical, heat, light etc) while passing through the components (resistors or load) in the circuit.voltage in series If we consider a circuit with more than one resistor connected in series and are powered with a 2V cell, the total loss of electrical potential is 2V. That is, there will be a certain voltage drop in each connected resistor. But we can see that the sum of voltage drop of all the components will be 2V which is equivalent to the voltage rating of the power source. Mathematically, we can express it as By using Ohm’s law the individual voltage drops can be calculated as Now, we can assume a series circuit comprises of 3 resistors and powered by a 9V energy source. Here, we are going to find out the potential difference at different location during the passage of current throughout the series circuit. The locations are marked in red color in the circuit below. We know that current passes in the direction from positive terminal towards the negative terminal of the source. The negative sign of the voltage or potential difference represents the loss in potential due to the resistor. The electrical potential difference of different points in the circuit can be represented with the help of a diagram called electric potential diagram that is shown below. electric potential voltage in series In this example, the electrical potential at A = 9V since it is the higher potential terminal. The electrical potential at H = 0V since it is the negative terminal. When the current passes through the 9V power source, the charge gains 9V of electrical potential, which is from H to A. While the current passes throughout the external circuit, the charge loses this 9V completely. Here, this happen in three steps. There will be drop in voltage when the current passes through the resistors but no voltage drop occurs when the passage is through the mere wire. So, we can see that between the points AB, CD, EF and GH; there is no voltage drop. But between the points B and C, the voltage drop is 2V. That is the source voltage 9V becomes 7V. Next, between the points D and E, the voltage drop is 4V. At this point, the voltage 7V becomes 3V. At last, between the points F and G, the voltage drop is 3V. At this point, the voltage 3V becomes 0V. The portion of the circuit between the points G and H, there is no energy for the charge. So, it desires an energy boost for the passage through the external circuit again. This is provided by the power source as the charge passes from H to A. The several voltage sources in series can be replaced by a single voltage source by taking the sum total of all the voltage sources. But we have to consider the polarity as shown below. voltage in series

AC Voltage Sources in Series

In the case of AC voltage sources in series, the voltage sources can be added or combined together to form a single source provided that the angular frequency (ω) of the connected sources are identical. If the AC voltage sources connected in series are of different angular frequencies, it can be added together provided the current through the connected sources is the same. ac voltage sources in series ac voltage sources in series ac voltage sources in series

Application of Voltage in Series Circuits

  • Voltage divider.
  • Fire alarm battery.
  • Batteries in remote, toys etc.
  • Lighting purposes in train, Christmas tree etc.




Comments/Feedbacks






Closely Related Articles Voltage or Electric Potential DifferenceVoltage in ParallelVoltage Drop CalculationVoltage DividerVoltage MultiplierVoltage DoublerVoltage RegulatorVoltage FollowerVoltage Regulator 7805Voltage to Current ConverterMore Related Articles Electric Current and Theory of Electricity | Heating and Magnetic EffectNature of ElectricityDrift Velocity Drift Current and Electron MobilityElectric Current and Voltage Division RuleRMS or Root Mean Square Value of AC SignalWorking Principle of a CapacitorQuality Factor of Inductor and CapacitorTransient Behavior of CapacitorCylindrical CapacitorSpherical CapacitorCapacitors in Series and ParallelHow to Test Capacitors?Electrical Conductance Conductivity of Metal Semiconductor and Insulator | Band TheoryWhat is Electrical Resistance?Resistivity and Laws of ResistanceProperties of Electric ConductorTemperature Coefficient of ResistanceResistance Variation with TemperatureSeries ResistanceActive and Passive Elements of Electrical CircuitElectrical DC Series and Parallel CircuitOhm's Law | Equation Formula and Limitation of Ohm's LawKirchhoff Current Law and Kirchhoff Voltage LawSingle and Multi Mesh AnalysisSuperposition TheoremThevenin Theorem and Thevenin Equivalent Voltage and ResistanceNorton Theorem | Norton Equivalent Current and ResistanceReciprocity TheoremNodal Analysis in Electric CircuitsMaximum Power Transfer TheoremDelta - Star transformation | Star - Delta TransformationMagnetic FieldMagnetic FluxMagnetic PermeabilityHysteresis LoopMagnetic Field and Magnetic Circuit | Magnetic MaterialsMagnetic SaturationEnergy Stored in a Magnetic FieldStatic Electric Field | Electrostatic Induction A Current Carrying Conductor Within A Magnetic FieldMagnetic SusceptibilityHard Magnetic MaterialsSoft Magnetic MaterialsMagnetic Circuit with Air GapElectric ChargeCoulombs Law | Explanation Statement Formulas Principle Limitation of Coulomb’s LawElectric Lines of ForceWhat is Electric Field?Electric Field Strength or Electric Field IntensityWhat is Flux? Types of Flux?Electric FluxElectric PotentialCapacitor and Capacitance | Types of CapacitorsEnergy Stored in CapacitorCharging a CapacitorDischarging a CapacitorFourier Series and Fourier TransformTrigonometric Fourier SeriesAnalysis of Exponential Fourier SeriesParity GeneratorElectric Circuit and Electrical Circuit ElementsSeries Parallel Battery CellsRL Series CircuitWhat is Inductor and Inductance | Theory of InductorRLC CircuitThree Phase Circuit | Star and Delta SystemRL Parallel CircuitRL Circuit Transfer Function Time Constant RL Circuit as FilterConstruction of AC Circuits and Working of AC CircuitsSeries RLC CircuitParallel RLC CircuitResistances in Series and Resistances in ParallelResonance in Series RLC CircuitPlanar and Non Planar Graphs of CircuitClipping CircuitMutual InductanceSelf InductanceSI System of UnitsElectrical International SymbolElectric Power Single and Three Phase Power Active Reactive ApparentVector Algebra | Vector DiagramRelationship of Line and Phase Voltages and Currents in a Star Connected SystemVector Diagram | Three Phase Vector DiagramTypes of Resistor Carbon Composition and Wire Wound ResistorVaristor Metal Oxide Varistor is Nonlinear ResistorCarbon Composition ResistorWire Wound ResistorVariable Resistors | Defination, Uses and Types of Variable ResistorsLight Dependent Resistor | LDR and Working Principle of LDRSource of Electrical EnergyVoltage SourceIdeal Dependent Independent Voltage Current SourceNew Articles Collecting Oil Sample from Oil Immersed Electrical EquipmentCauses of Insulating Oil DeteriorationAcidity Test of Transformer Insulating OilMagnetic FluxRing Counter