# Voltage Divider

**, in fact is a fundamental circuit in the field of electronics which can produce a portion of its input voltage as output. It is formed using two resistors or any passive components and a voltage source. The resistors are connected in series here and the voltage is given across these two resistors. This circuit is also termed as**

*Voltage Divider***potential divider**. The input voltage is distributed among the resistors (components) of the voltage divider circuit. As a result, voltage division takes place.

## Circuit of Voltage Divider

As we mentioned above, two series resistors and voltage source constitutes a simple voltage divider. This circuit can be formed in several ways as shown below. In the above figure, (A) represents shorthand, (B) represents longhand and (C) and (D) shows the resistors in different and same angle respectively.But all the four circuits are in effect the same. R_{1} is the resistor which is always close to the input voltage source and R_{2} is the resistor which is near to the ground. V_{out} is the voltage drop across the resistor, R_{2}. It is actually the divider voltage which we get from this circuit as the output.

### Equation of Voltage Divider in Unloaded Condition

The simple**voltage divider**circuit with reference to ground is shown in the figure below. Here, two electrical impedances (Z

_{1}and Z

_{2}) or any passive components are connected in series. The impedances may be of resistors or inductors or capacitors. The output of the circuit is taken across the impedance, Z

_{2}. Under open circuit output condition; that is there will be no current flow in the output side, then

Now we can prove the output voltage equation (1) using the basic law, Ohm’s Law .
Substitute equation (4) in (3), we get
So, the equation is proved.

The transfer function of the above equation is
This equation is also called as Divider’s
The capacitive divider circuits never allow DC input to pass. They work on AC input.

For Inductive divider with non-interacting inductors, the equation becomes
The inductive divider divides the DC input analogous to resistor divider circuit depending on resistance and it divides AC input with regard to the inductance.

A basic Low-pass RC filter circuit is shown below which comprises of a resistor and capacitor.
C → Capacitance

R → Resistance

X_{C} → Reactance of the capacitor

ω → Radiant frequency

j → Imaginary unit

Here, the divider’s voltage ratio is
RC → Time constant of the circuit represented as τ.

## Voltage Divider Under Loaded Condition

Now, we can see the**voltage divider**circuit in loaded condition. Here, the resistors (R

_{1}and R

_{2}) are taken for simplicity. A resistor (R

_{L}) is connected across the output. Then the equation becomes, R

_{2}and R

_{L}are parallel to each other. The circuit with loaded condition is shown below.

## Applications of Voltage Divider

Applications include Logic level shifting, Sensor measurement, High voltage measurement, Signal Level Adjustment. The measuring instruments such as Multimeter and Wheatstone bridge consist of**voltage divider**. Resistor voltage divider is usually used to generate reference voltages or for decreasing the magnitude of the voltage for the ease of measurement. In addition to this; at low frequency, it can be function as signal attenuators. In the case of DC and very low frequencies, the resistor voltage divider is suitable. Capacitive voltage divider is implemented in power transmission for high voltage measurement and to compensate load capacitance.

**Comments/Feedbacks**

Closely Related Articles Voltage or Electric Potential DifferenceVoltage in SeriesVoltage in ParallelVoltage Drop CalculationVoltage MultiplierVoltage DoublerVoltage RegulatorVoltage FollowerVoltage Regulator 7805Voltage to Current ConverterMore Related Articles Electric Current and Theory of Electricity | Heating and Magnetic EffectNature of ElectricityDrift Velocity Drift Current and Electron MobilityElectric Current and Voltage Division RuleRMS or Root Mean Square Value of AC SignalWorking Principle of a CapacitorQuality Factor of Inductor and CapacitorTransient Behavior of CapacitorCylindrical CapacitorSpherical CapacitorCapacitors in Series and ParallelHow to Test Capacitors?Electrical Conductance Conductivity of Metal Semiconductor and Insulator | Band TheoryWhat is Electrical Resistance?Resistivity and Laws of ResistanceProperties of Electric ConductorTemperature Coefficient of ResistanceResistance Variation with TemperatureSeries ResistanceActive and Passive Elements of Electrical CircuitElectrical DC Series and Parallel CircuitOhm's Law | Equation Formula and Limitation of Ohm's LawKirchhoff Current Law and Kirchhoff Voltage LawSingle and Multi Mesh AnalysisSuperposition TheoremThevenin Theorem and Thevenin Equivalent Voltage and ResistanceNorton Theorem | Norton Equivalent Current and ResistanceReciprocity TheoremNodal Analysis in Electric CircuitsMaximum Power Transfer TheoremDelta - Star transformation | Star - Delta TransformationMagnetic FieldMagnetic FluxMagnetic PermeabilityHysteresis LoopMagnetic Field and Magnetic Circuit | Magnetic MaterialsMagnetic SaturationEnergy Stored in a Magnetic FieldStatic Electric Field | Electrostatic Induction A Current Carrying Conductor Within A Magnetic FieldMagnetic SusceptibilityHard Magnetic MaterialsSoft Magnetic MaterialsMagnetic Circuit with Air GapElectric ChargeCoulombs Law | Explanation Statement Formulas Principle Limitation of Coulomb’s LawElectric Lines of ForceWhat is Electric Field?Electric Field Strength or Electric Field IntensityWhat is Flux? Types of Flux?Electric FluxElectric PotentialCapacitor and Capacitance | Types of CapacitorsEnergy Stored in CapacitorCharging a CapacitorDischarging a CapacitorFourier Series and Fourier TransformTrigonometric Fourier SeriesAnalysis of Exponential Fourier SeriesParity GeneratorElectric Circuit and Electrical Circuit ElementsSeries Parallel Battery CellsRL Series CircuitWhat is Inductor and Inductance | Theory of InductorRLC CircuitThree Phase Circuit | Star and Delta SystemRL Parallel CircuitRL Circuit Transfer Function Time Constant RL Circuit as FilterConstruction of AC Circuits and Working of AC CircuitsSeries RLC CircuitParallel RLC CircuitResistances in Series and Resistances in ParallelResonance in Series RLC CircuitPlanar and Non Planar Graphs of CircuitClipping CircuitMutual InductanceSelf InductanceSI System of UnitsElectrical International SymbolElectric Power Single and Three Phase Power Active Reactive ApparentVector Algebra | Vector DiagramRelationship of Line and Phase Voltages and Currents in a Star Connected SystemVector Diagram | Three Phase Vector DiagramTypes of Resistor Carbon Composition and Wire Wound ResistorVaristor Metal Oxide Varistor is Nonlinear ResistorCarbon Composition ResistorWire Wound ResistorVariable Resistors | Defination, Uses and Types of Variable ResistorsLight Dependent Resistor | LDR and Working Principle of LDRSource of Electrical EnergyVoltage SourceIdeal Dependent Independent Voltage Current SourceNew Articles Collecting Oil Sample from Oil Immersed Electrical EquipmentCauses of Insulating Oil DeteriorationAcidity Test of Transformer Insulating OilMagnetic FluxRing Counter