× Home MCQ Videos Basic Electrical Circuit Theories Electrical Laws Materials Batteries Illumination Generation Transmission Distribution Switchgear Protection Measurement Control System Utilities Safety Transformer Motor Generator Electrical Drives Electronics Devices Power Electronics Digital Electronics Biomedical Instrumentation

Thermal Relay Working Principle Construction of Thermal Overload Relay

on 24/2/2012 & Updated on 1/9/2018
The coefficient of expansion is one of the basic properties of any material. Two different metals always have different degree of linear expansion. A bimetallic strip always bends when it heated up, due to this inequality of linear expansion of two different metals.

Working Principle of Thermal Relay

A thermal relay works depending upon the above mentioned property of metals. The basic working principle of thermal relay is that, when a bimetallic strip is heated up by a heating coil carrying over current of the system, it bends and makes normally open contacts.

Construction of Thermal Relay

The construction of thermal relay is quite simple. As shown in the figure above the bimetallic strip has two metals – metal A and metal B. Metal A has lower coefficient of expansion and metal B has higher coefficient of expansion.

When over current flows through the heating coil, it heats up the bimetallic strip. Due to the heat generated by the coil, both of the metals are expanded. But expansion of metal B is more than expansion of metal A. Due to this dissimilar expansion the bimetallic strip will bend towards metal A as shown in the figure below. thermal relay

Related pages
Thermal Relay Working Principle Construction of Thermal Overload Relay

thermal relay The strip bends, the NO contact is closed which ultimately energizes the trip coil of a circuit breaker. The heating effect is not instantaneous. As per Joule’s law of heating, the amount of heat generated is Where, I is the over current flowing through the heating coil of thermal relay. R is the electrical resistance of the heating coil, t is the time for which the current I flows through the heating coil. Hence from the above equation it is clear that, heat generator by the coil is directly proportional to the time during which the over current flows through the coil. Hence there is a prolonged time delay in the operation of thermal relay.

That is why this type of relay is generally used where over load is allowed to flow for a predetermined amount of time before it trips. If overload or over current falls down to normal value before this predetermined time, the relay will not be operated to trip the protected equipment. A typical application of thermal relay is overload protection of electric motor.

Rate the page.

Rating = 5 & Total votes = 2


New Articles
Articles on Protection Relay
Types of Protective RelaysMotor Protection RelayFeeder Protection RelaysMultiplier of RelayElectromagnetic RelayInduction Cup RelayOver Current RelayDifferential RelayThermal RelayDistance RelayInstantaneous RelayInverse Time Relay Backup Relay
More Articles on Protection
Protection Scheme
Articles Categories
Home
Basic Electrical
Electric Transformer
Electric Generator
Electric Motor
Electrical MCQ
Tools
Video Lectures
Electrical Generation
Electric Transmission
Switchgear
Electric Protection
Electrical Measurement
Electronics Devices
Power Electronics
Digital Electronics