electrical4u.com logo Home MCQ Engineering Calculators Videos Basic Electrical Circuit Theories Electrical Laws Materials Batteries Illumination Generation Transmission Distribution Switchgear Protection Measurement Control System Utilities Safety Transformer Motor Generator Electrical Drives Electronics Devices Power Electronics Digital Electronics Biomedical Instrumentation

Squirrel Cage Induction Motor

Published on 26/7/2014 & updated on 20/8/2018
HOME / ELECTRIC MOTOR / THREE PHASE INDUCTION MOTOR
Russian inventor Mikhail Dolivo Dobrovolsky developed first three Phase Squirrel Cage Induction Motor in 1889.
Squirrel Cage Induction Motor consists of following parts STATOR It consists of three phase winding with core along with metal housing. Windings are such placed that they are electrically and mechanically 120o apart from in space. The winding is mounted on the laminated iron core to provide low reluctance path for generated flux by AC currents. motor stator core laminations ROTOR It is the part of the motor which will be in a rotation to give mechanical output for a given amount of electrical energy. The rated output of the motor is mentioned on the nameplate in horsepower. It consists of a shaft, short-circuited copper/ aluminum bars, and a core.

The rotor core is laminated to avoid power loss from eddy currents and hysteresis. Conductors are skewed to prevent cogging during starting operation and gives better transformation ratio between stator and rotor. rotor OTHER PARTS A fan is attached to the back side of the rotor to provide heat exchange, and hence it maintains the temperature of the motor under a limit. Bearings are provided as the base for rotor motion, and the bearings keep the smooth rotation of the motor.

Related pages
Squirrel Cage Induction Motor

Rotation of Magnetic Field in Space A three phase squirrel cage motor works on the fundamental principle of electromagnetism. When a three phase supply is given to the stator winding it sets up a rotating magnetic field in space. This rotating magnetic field has a speed which is known as synchronous speed.

This rotating magnetic field induces the voltage in rotor bars and hence short-circuit currents start flowing in the rotor bars. These rotor currents generate their self-magnetic field which will interact with the field of the stator. Now the rotor field will try to oppose its cause, and hence rotor starts following the rotating magnetic field. The moment rotor catches the rotating magnetic field the rotor current drops to zero as there is no more relative motion between the rotating magnetic field and rotor. Hence, at that moment the rotor experiences zero tangential force hence the rotor decelerates for the moment. After deceleration of the rotor, the relative motion between the rotor and the rotating magnetic field reestablishes hence rotor current again being induced. So again, the tangential force for rotation of the rotor is restored, and therefore again the rotor starts following rotating magnetic field, and in this way, the rotor maintains a constant speed which is just less than the speed of rotating magnetic field or synchronous speed.

Slip is a measure of the difference between the speed of the rotating magnetic field and rotor speed. The frequency of the rotor current = slip × supply frequency




Please Rate this Article
4.88
⚑ 9 total
5
4
3
2
1


New Articles
More Articles on Electric Motor
Basic MotorDC Motor BasicSpeed Control of DC MotorCommutation of DC MotorDC Motor TypesBasic Induction MotorStarting of DC MotorSynchronous MotorTesting of DC Motor
Articles Categories
Write for Us
Home
Basic Electrical
Electric Transformer
Electric Generator
Electric Motor
Electrical MCQ
Engineering Calculators
Video Lectures
Electrical Generation
Electric Transmission
Switchgear
Electric Protection
Electrical Measurement
Electronics Devices
Power Electronics
Digital Electronics