ONLINE ELECTRICAL ENGINEERING STUDY SITE

Silicon Semiconductor

Modern electronic devices are constructed with resistors, diodes, transistors, integrated circuits which are made by semiconductor materials. Nowadays, silicon is the most used semiconductor in power electronic components: diodes, thyristors, IGBT, MOSFET transistors, etc. The reason is that the silicon is resistant to very high temperature and current. The maximum operation temperature of silicon transistors is 150oC while for example germanium transistor has up to 70oC. The silicon is not a conductor in the true sense of the word. It conducts electricity under certain conditions. The silicon is semiconductor material which is insulator at the absolute zero temperature (0oK). With increasing of temperature, a thermal energy will cause a covalent electrons fraction which becomes free.

When an electrical field is applied they will move and become conduction electrons. That means that the silicon has a negative resistance temperature coefficient. Pure silicon has covalent bonds energy of 1.1 eV. That means how much energy it takes to free the valence electrons in the crystal structure. silicon semiconductor Pure mono crystalline silicon is used as a wafer and mechanical support for integral circuits. The pure silicon poorly conducts the electrical energy. The silicon is doped with different impurities to increase the conductivity level of the material. The extra energy levels have been added by the impurities and an energy band gap becomes extended. Semiconductors with wide band gap imply materials with band gap energy above 2 eV. Those semiconductors are suitable for high power electronics, high temperature, and high operation frequency conditions. The Silicon Carbide (SiC) gives the best results in commercial electronic components production. It has band gap energy 3.03 eV.

The silicon with added impurities can become N-type semiconductor or P-type semiconductor. If the impurity with five valence electrons-donor (nitrogen-N, phosphorus-P, arsenic-As, antimony-Sb, bismuth- Bi) is added to the tetravalent pure silicon, the four impurity electrons will be covalently tied up with four neighborly Si atoms and forming covalent bonds. The fifth electron remains free and thanks to thethermal energy it chaotically moves in the crystal lattice. If an external electric field exists the electron will conduct electricity. The P-type semiconductor is formed by adding trivalent impurity- acceptor (indium-In, boron-B, aluminum-Al, and gallium-Ga) to the tetravalent pure silicon the covalent bonds will be formed with three Si atoms. An empty space is known as a hole. The formed hole is free to move in the crystal lattice. In this case, the positively charged holes will conduct electricity.

Applications of Silicon Semiconductor

The main advantages of semiconductors based on the Si are long life cycle, small volume, lightweight, simple production, great mechanical strength, low supplying power, economical production. The Si is essential material in photovoltaic cells construction (98%). Semiconductor crystal diodes (rectifier) are made binding the P-type and N-type of semiconductor, known as PN junction. Depending on the supplied voltage polarity, the energy band gap will increase or decrease thus the diode resistance is changing and can be very small (Ohms) or very high (MOhms). Based on that, the diode will conduct electricity or not (rectifier diode effect). The nonlinear resistors (voltage dependent resistors) as varistors are usually made of SiC (silicon carbide). Also, transistors, microchips are made by silicon-based conductor.



Comments/Feedbacks








Closely Related Articles Theory of SemiconductorIntrinsic SemiconductorExtrinsic SemiconductorsEnergy Bands of SiliconDonor and Acceptor Impurities in Semiconductor Conductivity of SemiconductorCurrent Density in Metal and Semiconductor Intrinsic Silicon and Extrinsic SiliconP Type SemiconductorN Type SemiconductorP N Junction Theory Behind P N JunctionForward and Reverse Bias of P N JunctionZener BreakdownAvalanche BreakdownHall Effect Applications of Hall EffectGallium Arsenide SemiconductorMore Related Articles Amplifier Gain | Decibel or dB GainIntegrated Circuits | Types of ICRegulated Power SupplyLaser | Types and Components of LaserWork FunctionMobility of Charge CarrierWhat are Photo Electrons? Electron volt or eVEnergy Quanta | Development of Quantum Physics Schottky EffectHeisenberg Uncertainty PrincipleSchrodinger Wave Equation and Wave FunctionCyclotron Basic Construction and Working PrincipleSinusoidal Wave SignalCommon Emitter AmplifierRC Coupled AmplifierDifferential AmplifierWave Particle Duality PrincipleSpace ChargeVacuum Diode History Working Principle and Types of Vacuum DiodePN Junction Diode and its CharacteristicsDiode | Working and Types of DiodeDiode CharacteristicsHalf Wave Diode RectifierFull Wave Diode RectifierDiode Bridge RectifierWhat is Zener Diode?Application of Zener DiodeLED or Light Emitting DiodePIN Photodiode | Avalanche PhotodiodeTunnel Diode and its ApplicationsGUNN DiodeVaractor DiodeLaser DiodeSchottky DiodePower DiodesDiode ResistanceDiode Current EquationIdeal DiodeReverse Recovery Time of DiodeDiode TestingMOSFET | Working Principle of p-channel n-channel MOSFETMOSFET CircuitsMOS Capacitor | MOS Capacitance C V CurveApplications of MOSFETMOSFET as a SwitchMOSFET CharacteristicsPower MOSFETHalf Wave RectifiersFull Wave RectifiersBridge RectifiersClamping CircuitTypes of TransistorsBipolar Junction Transistor or BJTBiasing of Bipolar Junction Transistor or BJTTransistor BiasingTransistor CharacteristicsCurrent Components in a TransistorTransistor Manufacturing TechniquesApplications of Bipolar Junction Transistor or BJT | History of BJTTransistor as a SwitchTransistor as an AmplifierJFET or Junction Field Effect Transistorn-channel JFET and p-channel JFETApplications of Field Effect TransistorDIAC Construction Operation and Applications of DIACTRIAC Construction Operation and Applications of TRIACPhototransistorNew Articles Measurement of Insulation ResistanceAmpere's Circuital LawMechanical Equivalent of HeatTrees and Cotrees of Electric NetworkDifferentiatorIntegrator
electrical engineering app