# Types of Resistor Carbon Composition and Wire Wound Resistor

Posted by Sibasish Ghosh on 24/2/2012 & Updated on 8/9/2018

## Definition of Resistor

A resistor offers resistance to the flow of current. The resistance is the measure of opposition to the flow of current in a resistor. More resistance means more opposition to current. The unit of resistance is ohm and it is represented as Ω. When one volt potential difference is applied across a resistor and for that one ampere of current flows through it, the resistance of the resistor is said to be one Ω. Resistor is one of the most essential passive elements in electrical and electronics engineering.

## Resistor

It is some time required to introduce electrical resistance in different circuit to limit the current through it. Resistor is an element of circuit which does the same. Such as series connected resistor limits the current flowing through the light emitting diode (LED).

In addition to that resistors serve many other purposes in electrical and electronic applications. The most essential requirement of a resistor is that its value of electrical resistance should not vary with temperature for a wide range. That means resistance variation with temperature must be as minimal as possible for a wide range of temperature. In other word the temperature coefficient of resistance of must be minimum for the materials by which a resistor is made of.

##### Related pages
Types of Resistor Carbon Composition and Wire Wound Resistor

### High Frequency Effects on Resistor

The effective resistance value of a resistor may be changed when it is subjected to alternating voltage. Not only that the value of resistance varies with variation of frequency of supply voltage. This change of resistance with frequency is called Boella effect. Actually it is not practically possible to make an ideal resistor. Practically it may have some inductor and capacitance in addition to its resistance. Therefore, the value of impedance of the resistor may vary with frequency. That is why a resistor is referred to be used within its useful frequency range. Useful frequency range is defined as the highest frequency limit beyond which the impedance of the resistor crosses its tolerance value.

High frequency effect on resistor depends upon its constructional feature. The impedance of wire wound resistor increases with frequency. On the other hand composition resistor reduces its impedance with increasing frequency. The impedance of film resistors does not change up to 100 MHz and then it decreases. Film resistors have the most stable high-frequency performance. The high frequency response of a resistor may also depend up to some extend on diameter of the resistor. It is seen that smaller diameter resistor has better frequency response. Because of that the length – diameter ration of high-frequency resistors is between 4:1 to 10:1.

### Voltage Coefficient of Resistance

The resistance of a resistor may also vary sometime with applied voltage across it. This change is expressed as a percentage of the resistance at 10 % of rated voltage. Thus the voltage coefficient of resistance is give by Where, R1 is the resistance at the rated voltage V1 and R2 is the resistance at 10% of rated voltage V2.

### Noise of a Resistor

Noise in a resistor is caused by its applied voltage, its physical dimensions, and materials by which it is made of. The noise includes Johnson noise, noise due to flow of current, noise due to cracked bodies, and noise due to loosen end caps and leads of the resistor. For variable resistors the noise can also be caused by the jumping of a moving contact over turns and by an imperfect electrical path between the contact and resistance element. Johnson noise is thermal noise. This noise depends upon temperature but does not depend upon frequencies. As this noise is same for all frequencies it is referred as “white noise”. The magnitude of thermal noise is given by, Where, ERMS is the value of the noise voltage (V) in rms, R is the resistance measured in ohm, k is Boltzmann constant (1.38 × 10 – 23 J/K), T is the temperature measured in Kelvin, and Δf is the bandwidth in Hz over which the noise energy is measured.

### Power Rating of Resistor

When current passes through a resistor there would be I2R loss and hence as per Joules law of heating there must be temperature rise in the resistor. A resistor must be operated within a temperature limit so that there should not be any permanent damage due high temperature. The power rating of resistor is defined as the maximum power that a resistor can dissipate in form of heat to maintain the temperature within maximum allowable limit. How much power a resistor will dissipate depends upon material, dimensions, voltage rating, maximum temperature limit of the resistor and ambient temperature.

### Voltage Rating of Resistor

This rating is defined as the maximum voltage that can be applied across a resistor due to which power dissipation will be within its allowable limit. Actually voltage rating of resistor is related to the power rating. As we know that power rating of resistor is expressed as Where, V is the applied voltage across the resistor and R is the resistance value of the resistor in ohms. From above equation it is clear that for limiting P, V must be limited for a particular resistor of resistance R. This V is voltage rating of resistor of power rating P watts and resistance R Ω.

## Types of Resistor

There are different types of resistor depending upon their construction, power dissipation capacities and tolerance of the value. Such as
1. Carbon Composition Resistor
2. Metal Film Resistor
3. Carbon Film Resistor
4. Non Linear Resistor
5. Varistor
6. Thermistor

### Carbon Composition Resistor

These types of resistor are very commonly used low cost resistor. The construction of carbon composition resistor is very simple. It is also commonly referred as carbon resistor. It is mainly made of carbon clay composition covered with a plastic case. The lead of the resistor is made of tinned copper. The main advantages of these resistors are that they are easily available in local market in very low cost and they are very durable too. But the main disadvantage is that they are very much temperature sensitive. These resistors are available in wide range of values. It is available in as low as 1 Ω value and it is also available in as high as 22 Mega Ω value. The tolerance range in resistance of carbon composition resistor is of ± 5 to ± 20 %. Such resistor has a tendency of electric noise due to passage of electrical current from one carbon particle to other. Where low cost is the main criteria of designing a circuit rather than it's performance, these resistors are normally used.

These carbon resistors are provided with different colored band on their cylindrical body. These color bands are code for the resistance values of carbon composition resistor along with their tolerance range.

#### Resistor Color Code

There are mainly four color bands provided on the body of resistors and each color indicates unique digit. Such as Black ⇒ 0, Brown ⇒ 1, Red ⇒ 2, Orange ⇒ 3, Yellow ⇒ 4, Green ⇒ 5, Blue ⇒ 6, Violet ⇒ 7 Gray ⇒ 8, White ⇒ 9. The first and second color bands indicate a two digits number. The 3rd color band indicates the power of ten as multiplier. The fourth band indicates the tolerance. If fourth band is of golden color the resistors may have ± 5 % tolerance in its value, if fourth band is of silver color, the resistor must have ± 10 % tolerance and if there is no fourth band provided, then the carbon resistor may have ± 20 % tolerance in it's value.

Suppose we have a carbon composition resistor which has four color bands among which first band is blue second band is yellow, third band is red and fourth band is golden. So from the above rule the first digit of the number will be 6 ( as Blue ⇒ 6 ), the second digit of the number will be 4 ( as Yellow ⇒ 4 ) and the multiplier of this two digit number will be 102 ( as Red ⇒ 2 ). Hence, electrical resistance value of the resistor will be 64 × 102 Ω. The tolerance of that value may be ± 5 % as the color of fourth band is golden.

### Wire Wound Resistor

The construction of this type of resistor is also very simple. In wire wound resistor a wire of manganin or constantan is wound around a cylinder of insulated material. The temperature coefficient of resistance of these two materials is almost zero. So there would no resistance variation with temperature. The wounded wire is covered with an insulating material such as baked enamel. This cover of insulating heat resistible material is provided to resist the effect of ambient temperature variation. Different sizes and ratings of wire wound resistor can easily be achieved by using different lengths and diameters of the wire. These resistors are easily available for wide range of ratings. The range of resistance values varies from 1 Ω to 1 MΩ. Typical tolerance limit of these resistors varies from 0.01 % to 1 %. They can be used for high power applications of 5 to 200 W dissipation ratings. The cost of these resistors is much higher than carbon resistor. Normally wire wound resistor is used where carbon composition resistor cannot meet the purpose because of its limitations. The main disadvantage of this resistor is the inductor that arises because of its coil like structure. At high frequency the behavior of the circuit may be changed due to its reaction. This problem can be solved if one half of the wire is wound in one direction and other half in opposite direction so that the inductor due to these two halves cancel each other hence net inductive effect of the resistor becomes nil. The non - inductive wire wound resistor is ideal for high frequency circuit but it is costlier than an ordinary one.

### Metal Film Resistor and Carbon Film Resistor

Basic structure of this type of resistor is constructed by means of film deposition technique of deposition a thick film of resistible material such as pure carbon or metal on to an insulating core. The desired value of resistance of metal film resistor or carbon film resistor can easily be obtained by either trimming the layer of thickness or by cutting helical grooves of suitable pitch along its length. That means for different resistance values, the length and depth of the helical grooves is maintained accordingly. Metallic contact cap is fitted at both ends of the resistor. The caps must be in contact with resistible film or helical grooves. The lead wires are welded to these end caps. Metal Film Resistor or Carbon Film Resistor can be made up to a value of 10,000 MΩ and size of this type of resistor is much smaller than wire wound resistor resistor. Because of their constructional features these resistor are fully non - inductive. The accuracy level of metal film resistor can be of order ± 1 % and they are suitable for high grade applications. Carbon film resistor givers lower tolerances and smaller values of electrical resistance than those available with metal film. However the carbon film posses a mildly negative temperature coefficient of resistance which is very useful for certain electronic circuit.

### Variable Resistor

The variable resistor means its resistance value can be changed at will. There is a rotating shaft or sliding contact is provided so that by sliding the contact we can change the resistor value. Basically there we have a resistance coil and by sliding the contact we change the position of the coil and hence the resistance changes. Examples of such resistors are Potentiometer, Rheostat etc.

### Thermistor

This is a special resistor that is used in electrical circuit. The word means that it is thermal resistor. Its resistance value changes with the change in the temperature value. Most of the thermistors have the negative temperature coefficient which means its resistance will fall down when the temperature value increases. The temperature coefficient may be positive as well. It is constructed by the use of various metals such as nickel, cobalt, copper etc. Also it can be prepared from the semiconductor devices as well. We can obtain a resistance upto a few mega ohms value. They are used to detect the small temperature changes, when there is a temperature change, however small, there will be a large change in the value of the resistance. Also they are used for voltage stabilization and remote sensing.

### Non Linear Resistor

They are also known as varistors. They are popular for having the non linear V-I characteristics curve. That is its resistance is not uniform and it does not obey OHM’s law. They are made of materials such as silicon carbides, zinc oxide. They are of three types-
1. Silicon carbide disc type varistor.
2. Silicon carbide rod type varistor.
3. Zinc oxide type varistor.

### Light Dependent Resistor

As the name suggests its resistance value depends on the intensity of light falling on it. This is made of cadmium sulfide containing a very small number of electrons when not illuminated. When light ray of a particular intensity falls on it electrons are ejected and hence the conductivity of it increases. That is it offers low resistance when light falls on it and offers high resistance in the dark or no light condition. They are only light dependent up to a wavelength of 680 nm. Mathematically we can say that, R = KE Where, K and α are constant. R is the resistance value in ohm. E is the intensity of illumination in lux.

#### Symbol of Varistor

4
⚑ 1 total
5
4
3
2
1

New Articles
Articles on Resistor
ResistivityCoefficient of ResistanceResistance VariationParallel Series ResistancesSeries ResistanceTypes of ResistorsCarbon Composition ResistorWire Wound ResistorElectrical ResistanceVaristorVariable ResistorLight Dependent Resistor
More Articles on Basic Electrical
MaterialElectricityFundamentalsQuantum TheoryBasic LawsCurrent VoltageInductorsCapacitorElectromagnetismCapacitor TypesElectrostaticPhasor DiagramElectron EmissionMiscellaneousGuest Post
Articles Categories
Home
Basic Electrical
Electric Transformer
Electric Generator
Electric Motor
Electrical MCQ
Engineering Calculators
Video Lectures
Electrical Generation
Electric Transmission
Switchgear
Electric Protection
Electrical Measurement
Electronics Devices
Power Electronics
Digital Electronics