Resistance Variation with Temperature

There are some materials mainly metals, such as silver, copper, aluminum, which have plenty of free electrons. Hence this type of materials can conduct current easily that means they are least resistive. But the resistivity of these materials is highly dependable upon their temperature. Generally metals offer more electrical resistance if temperature is increased. On the other hand the resistance offered by a non-metallic substance normally decreases with increase of temperature.Resistance Variation With Temperature

If we take a piece of pure metal and make its temperature 0o by means of ice and then increase its temperature from gradually from 0oC to to 100oC by heating it. During increasing of temperature if we take its resistance at a regular interval, we will find that electrical resistance of the metal piece is gradually increased with increase in temperature. If we plot the resistance variation with temperature i.e. resistance Vs temperature graph, we will get a straight line as shown in the figure below. If this straight line is extended behind the resistance axis, it will cut the temperature axis at some temperature, - t0oC. From the graph it is clear that, at this temperature the electrical resistance of the metal becomes zero. This temperature is referred as inferred zero resistance temperature. Although zero resistance of any substance cannot be possible practically. Actually rate of resistance variation with temperature is not constant throughout all range of temperature. Actual graph is also shown in the figure below.
Let's R1 and R2 are the measured resistances at temperature t1oC and t2oC respectively. Then we can write the equation below,  From the above equation we can calculate resistance of any material at different temperature. Suppose we have measured resistance of a metal at t1oC and this is R1. If we know the inferred zero resistance temperature i.e. t0 of that particular metal, then we can easily calculate any unknown resistance R2 at any temperature t2oC from the above equation.

The resistance variation with temperature is often used for determining temperature variation of any electrical machine. For example, in temperature rise test of transformer, for determining winding temperature rise, the above equation is applied. This is impossible to access winding inside the an electrical power transformer insulation system for measurement of temperature but we are lucky enough that we have resistance variation with temperature graph in our hand. After measuring electrical resistance of the winding both at the beginning and end of the test run of the transformer, we can easily determine the temperature rise in the transformer winding during test run. 20oC is adopted as standard reference temperature for mentioning resistance. That means if we say resistance of any substance is 20 Ω that means this resistance is measured at the temperature of 20oC.

Video Resistance Variation with Temperature


Closely Related Articles Electrical Conductance Conductivity of Metal Semiconductor and Insulator | Band TheoryWhat is Electrical Resistance?Resistivity and Laws of ResistanceProperties of Electric ConductorTemperature Coefficient of ResistanceSeries ResistanceMore Related Articles Electric Current and Theory of Electricity | Heating and Magnetic EffectNature of ElectricityDrift Velocity Drift Current and Electron MobilityElectric Current and Voltage Division RuleRMS or Root Mean Square Value of AC SignalWorking Principle of a CapacitorQuality Factor of Inductor and CapacitorTransient Behavior of CapacitorCylindrical CapacitorSpherical CapacitorCapacitors in Series and ParallelHow to Test Capacitors?Active and Passive Elements of Electrical CircuitElectrical DC Series and Parallel CircuitOhm's Law | Equation Formula and Limitation of Ohm's LawKirchhoff Current Law and Kirchhoff Voltage LawSingle and Multi Mesh AnalysisSuperposition TheoremThevenin Theorem and Thevenin Equivalent Voltage and ResistanceNorton Theorem | Norton Equivalent Current and ResistanceReciprocity TheoremNodal Analysis in Electric CircuitsMaximum Power Transfer TheoremDelta - Star transformation | Star - Delta TransformationMagnetic FieldMagnetic FluxMagnetic PermeabilityHysteresis LoopMagnetic Field and Magnetic Circuit | Magnetic MaterialsMagnetic SaturationEnergy Stored in a Magnetic FieldStatic Electric Field | Electrostatic Induction A Current Carrying Conductor Within A Magnetic FieldMagnetic SusceptibilityHard Magnetic MaterialsSoft Magnetic MaterialsMagnetic Circuit with Air GapElectric ChargeCoulombs Law | Explanation Statement Formulas Principle Limitation of Coulomb’s LawElectric Lines of ForceWhat is Electric Field?Electric Field Strength or Electric Field IntensityWhat is Flux? Types of Flux?Electric FluxElectric PotentialCapacitor and Capacitance | Types of CapacitorsEnergy Stored in CapacitorCharging a CapacitorDischarging a CapacitorFourier Series and Fourier TransformTrigonometric Fourier SeriesAnalysis of Exponential Fourier SeriesParity GeneratorElectric Circuit and Electrical Circuit ElementsSeries Parallel Battery CellsRL Series CircuitWhat is Inductor and Inductance | Theory of InductorRLC CircuitThree Phase Circuit | Star and Delta SystemRL Parallel CircuitRL Circuit Transfer Function Time Constant RL Circuit as FilterConstruction of AC Circuits and Working of AC CircuitsSeries RLC CircuitParallel RLC CircuitResistances in Series and Resistances in ParallelResonance in Series RLC CircuitPlanar and Non Planar Graphs of CircuitClipping CircuitMutual InductanceSelf InductanceSI System of UnitsElectrical International SymbolElectric Power Single and Three Phase Power Active Reactive ApparentVector Algebra | Vector DiagramRelationship of Line and Phase Voltages and Currents in a Star Connected SystemVector Diagram | Three Phase Vector DiagramTypes of Resistor Carbon Composition and Wire Wound ResistorVaristor Metal Oxide Varistor is Nonlinear ResistorCarbon Composition ResistorWire Wound ResistorVariable Resistors | Defination, Uses and Types of Variable ResistorsLight Dependent Resistor | LDR and Working Principle of LDRSource of Electrical EnergyVoltage SourceIdeal Dependent Independent Voltage Current SourceVoltage or Electric Potential DifferenceVoltage in SeriesVoltage in ParallelVoltage Drop CalculationVoltage DividerVoltage MultiplierVoltage DoublerVoltage RegulatorVoltage FollowerVoltage Regulator 7805Voltage to Current ConverterNew Articles Collecting Oil Sample from Oil Immersed Electrical EquipmentCauses of Insulating Oil DeteriorationAcidity Test of Transformer Insulating OilMagnetic FluxRing Counter