× Home Basic Electrical Circuit Theories Electrical Laws Materials Batteries Illumination Generation Transmission Distribution Switchgear Protection Measurement Control System Utilities Safety Transformer Motor Generator Electrical Drives Electronics Devices Power Electronics Digital Electronics MCQ Videos Forum

Trees and Cotrees of Electric Network

A tree of electric network is set of branches which is a set of branches which contains all the nodes of the network but does not form any closed path.

Let us explain the tree of electric network as defined above.electric network The above figure-1, shows an electric network with five nodes 1,2,3,4 and 5.

Now, if we remove the branches 1-2, 2-3, 3-4 and 4-1 from the circuit, we will get, the graph as shown below in figure-2. tree of electric network

The above graph as shown in the figure-2, contains all the five nodes of the network, but does not from any closed path. This is an example of tree of electric network. In this way numbers of such tree can be formed in a single electric circuit, which contains same five nodes without containing any closed loop.

tree of the electric network The branches of a tree are also known as twigs. In figure-2, figure-3 and figure-4 we can see that, there are four twigs or branches of tree in each tree of that electric network. The number of nodes in the network is 5.
So, in this case, This is a general equation for all trees of any electric network. The general equation is normally written as, Where, l is the number of branches in a tree and n is the number of nodes in the network from which the trees are formed.

Cotrees of Electric Network

When, a graph is formed from an electric network, some selective branches are taken. The branches of the network which are not in tree formation are referred as links or chords. The graph formed by these links or chords is called cotree. Cotree can be closed or opened depending upon the links. cotrees of electric network cotrees of electric network cotrees of electric network The cotrees are shown in the above figures by red colour. It is found from figure-5, figure-6 and figure-7 that, the sum of number of branches of tree and its cotree is the total number branches of electric network.
So, if number of links of a cotree is l', then Where, l is the number of twigs in the tree and b is the number of branches in a network. So, Where, n is the number of nodes in the electric network.

Properties of Tree of Electric Netwrok



Comments

Related Articles Trees and CotreesIncident MatrixCutset MatrixMore Related Articles Op-ampTwo Port NetworkCircuit AnalysisBasic LawsCircuit TheoremNew Articles Natural Gas Power GeneratorsHow to Choose the Best Theater Lighting Equipment?How to Make an Electric Water Pump?Voltage RegulatorsTuned Collector Oscillator Articles Categories MCQ Contact Us Basic Electrical Circuit Theories Electrical Laws Materials Batteries Illumination Generation Transmission Distribution Switchgear Protection Measurement Control System Utilities Safety Transformer Motor Generator Electrical Drives Electronics Devices Power Electronics Digital Electronics Videos