# Time Constant

Differentiating both sides with respect to time t, we get,

Integrating both side we get,
Now, at t = 0, the capacitor behaves as short circuit, so, just after closing the switch, the current through the circuit will be,
Now, putting this value in equation (i) we get,
Putting the value of k at equation (i) we get,
Now, if we put t = RC in the final expression of circuit current i(t), we get,
From the above mathematical expression it is clear that RC is the time in second during which the current in a charging capacitor diminishes to 36.7 percent from its initial value. Initial value means, current at the time of switching on the unchanged capacitor.
This term is quite significant in analyzing behavior of capacitive as well as inductive circuit. This term is known as **time constant**. So **time constant** is the duration in seconds during which the current through a capacities circuit becomes 36.7 percent of its initial value. This is numerically equal to the product of resistance and capacitance value of the circuit. **Time constant** is normally denoted by τ (tau). So,
In complex RC circuit, **time constant** will be product of equivalent resistance and capacitance of circuit.
Let us discuss significance of time constant in more details for that, we plot current i(t).
At t = 0, the current through the capacitor circuit is
At t = RC, the current through the capacitor is
Let us consider, another RC circuit.
Circuit equations using KVL of the above the circuits are,
and
From (iii) and (v)
Differenting both sides with respect to time t, we get,
Integrating both sides we get,
At t = 0,
Time constant of this circuit would be 2RC/3 sec. Now, the equivalent resistance of the circuit is,
Time constant of the circuit has become
Let us consider an example of series RL circuit
Applying Kirchhoff Voltage Law in the above circuit. we get,
The equation can also be solved Laplace Transformation technique. For that we have to take Laplace Transformation of the equation at both sides,
Hence, in this equation.
Since, current just after switch is on, current through the inductor will be zero.

Now,
Taking inverse Laplace of the above equation, we get,
Now, if we put,
We get,
So, at RL circuit, at time = L/R sec the current becomes 63.3% of its final steady state value. The L/R is known as time constant of an LR circuit. Let us plot the current of inductor circuit.
The time constant of an LR circuit is the ratio of inductance to resistance of the circuit. Let us take another
This circuit can be redrawn as,
So, time constant of the circuit would be

**Comments/Feedbacks**

Closely Related Articles Parity GeneratorDual NetworkElectric Circuit and Electrical Circuit ElementsSeries Parallel Battery CellsRL Series CircuitWhat is Inductor and Inductance | Theory of InductorRLC CircuitThree Phase Circuit | Star and Delta SystemRL Parallel CircuitRL Circuit Transfer Function Time Constant RL Circuit as FilterConstruction of AC Circuits and Working of AC CircuitsSeries RLC CircuitParallel RLC CircuitResonance in Series RLC CircuitPlanar and Non Planar Graphs of CircuitClipping CircuitMore Related Articles Phase Synchronizing Device or Controlled Switching DeviceElectric Current and Theory of Electricity | Heating and Magnetic EffectNature of ElectricityDrift Velocity Drift Current and Electron MobilityRMS or Root Mean Square Value of AC SignalWorking Principle of a CapacitorQuality Factor of Inductor and CapacitorTransient Behavior of CapacitorCylindrical CapacitorSpherical CapacitorCapacitors in Series and ParallelHow to Test Capacitors?Electrical Conductance Conductivity of Metal Semiconductor and Insulator | Band TheoryWhat is Electrical Resistance?Resistivity and Laws of ResistanceProperties of Electric ConductorTemperature Coefficient of ResistanceResistance Variation with TemperatureActive and Passive Elements of Electrical CircuitElectrical DC Series and Parallel CircuitMagnetic FieldMagnetic FluxMagnetic PermeabilityHysteresis LoopMagnetic Field and Magnetic Circuit | Magnetic MaterialsMagnetic SaturationEnergy Stored in a Magnetic FieldStatic Electric Field | Electrostatic Induction A Current Carrying Conductor within a Magnetic FieldMagnetic SusceptibilityHard Magnetic MaterialsSoft Magnetic MaterialsMagnetic Circuit with Air GapElectric ChargeCoulombs Law | Explanation Statement Formulas Principle Limitation of Coulomb’s LawElectric Lines of ForceWhat is Electric Field?Electric Field Strength or Electric Field IntensityWhat is Flux? Types of Flux?Electric FluxElectric PotentialCapacitor and Capacitance | Types of CapacitorsEnergy Stored in CapacitorCharging a CapacitorDischarging a CapacitorFourier Series and Fourier TransformTrigonometric Fourier SeriesAnalysis of Exponential Fourier SeriesMutual InductanceSelf InductanceSI System of UnitsElectrical International SymbolElectric Power Single and Three Phase Power Active Reactive ApparentVector Algebra | Vector DiagramRelationship of Line and Phase Voltages and Currents in a Star Connected SystemVector Diagram | Three Phase Vector DiagramTypes of Resistor Carbon Composition and Wire Wound ResistorVaristor Metal Oxide Varistor is Nonlinear ResistorCarbon Composition ResistorWire Wound ResistorVariable Resistors | Defination, Uses and Types of Variable ResistorsLight Dependent Resistor | LDR and Working Principle of LDRVoltage SourceIdeal Dependent Independent Voltage Current SourceVoltage or Electric Potential DifferenceVoltage Drop CalculationVoltage DividerVoltage MultiplierVoltage DoublerVoltage RegulatorVoltage FollowerVoltage Regulator 7805Voltage to Current ConverterNew Articles Trees and Cotrees of Electric NetworkDifferentiatorIntegratorPhase Synchronizing Device or Controlled Switching DeviceDigital to Analog Converter or DACDifference Amplifier