# Self Inductance

**Self inductance**is the ration between the induced Electro Motive Force (EMF) across a coil to the rate of change of current through this coil.

**Self inductance**is related term to self induction phenomenon. Because of self induction self inductance generates. Self-inductance or Co-efficient of Self-induction is denoted as L. Its unit is Henry (H). First we have to know what self induction is. Self induction is the phenomenon by which in a coil a change in electric current produces an induced Electro Motive Force across this coil itself. This induced Electro Motive Force (ε) across this coil is proportional to the current changing rate. The higher the rate of change in current, the higher the value of EMF.

We can write that, But the actual equation is The question is that why there is Minus (-) sign? This Induced EMF across this coil is always opposite to the direction of the rate of change of current as per Lenz’s Law. When current (I) flows through a coil some electric flux produces inside the coil in the direction of the current flowing. At that moment of self induction phenomenon, the induced EMF generates to oppose this rate of change of current in that coil. So their values are same but sign differs. Look at the figure below. Take a closer look at a coil that is carrying current. The magnetic field forms concentric loops that surround the wire and join to form larger loops that surround the coil. When the current increases in one loop the expanding magnetic field will cut across some or all of the neighboring loops of wire, inducing a voltage in these loops.

### Video Presentation of Self Inductance

**self inductance**is in a coil. It is because of steady flow of unidirectional current through this coil after closing the operating switch after t = 0+.

But in AC circuit, alternating effect of current always causes the self-induction in the coil and a certain value of this self-inductance gives the inductive reactance depending on the value of supply frequency.
Generally in the electrical circuit the coils those are used are known as inductor having values of L_{1}, L_{2}, L_{3} etc. when they are series combination then equivalent inductance of them is calculated as
When they are in parallel, then

**Comments/Feedbacks**

Closely Related Articles Mutual InductanceMore Related Articles Electric Current and Theory of Electricity | Heating and Magnetic EffectNature of ElectricityDrift Velocity Drift Current and Electron MobilityElectric Current and Voltage Division RuleRMS or Root Mean Square Value of AC SignalWorking Principle of a CapacitorQuality Factor of Inductor and CapacitorTransient Behavior of CapacitorCylindrical CapacitorSpherical CapacitorCapacitors in Series and ParallelHow to Test Capacitors?Electrical Conductance Conductivity of Metal Semiconductor and Insulator | Band TheoryWhat is Electrical Resistance?Resistivity and Laws of ResistanceProperties of Electric ConductorTemperature Coefficient of ResistanceResistance Variation with TemperatureSeries ResistanceActive and Passive Elements of Electrical CircuitElectrical DC Series and Parallel CircuitOhm's Law | Equation Formula and Limitation of Ohm's LawKirchhoff Current Law and Kirchhoff Voltage LawSingle and Multi Mesh AnalysisSuperposition TheoremThevenin Theorem and Thevenin Equivalent Voltage and ResistanceNorton Theorem | Norton Equivalent Current and ResistanceReciprocity TheoremNodal Analysis in Electric CircuitsMaximum Power Transfer TheoremDelta - Star transformation | Star - Delta TransformationMagnetic FieldMagnetic FluxMagnetic PermeabilityHysteresis LoopMagnetic Field and Magnetic Circuit | Magnetic MaterialsMagnetic SaturationEnergy Stored in a Magnetic FieldStatic Electric Field | Electrostatic Induction A Current Carrying Conductor Within A Magnetic FieldMagnetic SusceptibilityHard Magnetic MaterialsSoft Magnetic MaterialsMagnetic Circuit with Air GapElectric ChargeCoulombs Law | Explanation Statement Formulas Principle Limitation of Coulomb’s LawElectric Lines of ForceWhat is Electric Field?Electric Field Strength or Electric Field IntensityWhat is Flux? Types of Flux?Electric FluxElectric PotentialCapacitor and Capacitance | Types of CapacitorsEnergy Stored in CapacitorCharging a CapacitorDischarging a CapacitorFourier Series and Fourier TransformTrigonometric Fourier SeriesAnalysis of Exponential Fourier SeriesParity GeneratorElectric Circuit and Electrical Circuit ElementsSeries Parallel Battery CellsRL Series CircuitWhat is Inductor and Inductance | Theory of InductorRLC CircuitThree Phase Circuit | Star and Delta SystemRL Parallel CircuitRL Circuit Transfer Function Time Constant RL Circuit as FilterConstruction of AC Circuits and Working of AC CircuitsSeries RLC CircuitParallel RLC CircuitResistances in Series and Resistances in ParallelResonance in Series RLC CircuitPlanar and Non Planar Graphs of CircuitClipping CircuitSI System of UnitsElectrical International SymbolElectric Power Single and Three Phase Power Active Reactive ApparentVector Algebra | Vector DiagramRelationship of Line and Phase Voltages and Currents in a Star Connected SystemVector Diagram | Three Phase Vector DiagramTypes of Resistor Carbon Composition and Wire Wound ResistorVaristor Metal Oxide Varistor is Nonlinear ResistorCarbon Composition ResistorWire Wound ResistorVariable Resistors | Defination, Uses and Types of Variable ResistorsLight Dependent Resistor | LDR and Working Principle of LDRSource of Electrical EnergyVoltage SourceIdeal Dependent Independent Voltage Current SourceVoltage or Electric Potential DifferenceVoltage in SeriesVoltage in ParallelVoltage Drop CalculationVoltage DividerVoltage MultiplierVoltage DoublerVoltage RegulatorVoltage FollowerVoltage Regulator 7805Voltage to Current ConverterNew Articles Collecting Oil Sample from Oil Immersed Electrical EquipmentCauses of Insulating Oil DeteriorationAcidity Test of Transformer Insulating OilMagnetic FluxRing Counter