# Resistances in Series and Resistances in Parallel

## Resistances in Series

Suppose you have, three resistors, R_{1}, R

_{2}and R

_{3}and you connect them end to end as shown in the figure below, then it would be referred as

**resistances in series**. In case of series connection, the equivalent resistance of the combination, is sum of these three electrical resistances.

That means, resistance between point A and D in the figure below, is equal to the sum of three individual resistances. The current enters in to the point A of the combination, will also leave from point D as there is no other parallel path provided in the circuit.

Now say this current is I. So this current I will pass through the resistance R_{1}, R_{2} and R_{3}. Applying Ohm’s law, it can be found that voltage drops across the resistances will be V_{1} = IR_{1}, V_{2} = IR_{2} and V_{3} = IR_{3}. Now, if total voltage applied across the combination of **resistances in series**, is V.

Then obviously
Since, sum of voltage drops across the individual resistance is nothing but the equal to applied voltage across the combination.

Now, if we consider the total combination of resistances as a single resistor of electric resistance value R, then according to Ohm’s law,

V = IR ………….(2)

Now, comparing equation (1) and (2), we get
So, the above proof shows that equivalent resistance of a combination of resistances in series is equal to the sum of individual resistance. If there were n number of resistances instead of three resistances, the equivalent resistance will be

## Resistances in Parallel

Let’s three resistors of resistance value R_{1}, R

_{2}and R

_{3}are connected in such a manner, that right side terminal of each resistor are connected together as shown in the figure below, and also left side terminal of each resistor are also connected together. This combination is called

**resistances in parallel**. If electric potential difference is applied across this combination, then it will draw a current I (say).

As this current will get three parallel paths through these three electrical resistances, the current will be divided into three parts. Say currents I

_{1}, I

_{1}and I

_{1}pass through resistor R

_{1}, R

_{2}and R

_{3}respectively. Where total source current Now, as from the figure it is clear that, each of the

**resistances in parallel**, is connected across the same voltage source, the voltage drops across each resistor is same, and it is same as supply voltage V (say).

Hence, according to Ohm’s law, Now, if we consider the equivalent resistance of the combination is R. Then, Now putting the values of I, I

_{1}, I

_{2}and I

_{3}in equation (1) we get, The above expression represents equivalent resistance of resistor in parallel. If there were n number of resistances connected in parallel, instead of three resistances, the expression of equivalent resistance would be

**Comments/Feedbacks**

Closely Related Articles Parity GeneratorElectric Circuit and Electrical Circuit ElementsSeries Parallel Battery CellsRL Series CircuitWhat is Inductor and Inductance | Theory of InductorRLC CircuitThree Phase Circuit | Star and Delta SystemRL Parallel CircuitRL Circuit Transfer Function Time Constant RL Circuit as FilterConstruction of AC Circuits and Working of AC CircuitsSeries RLC CircuitParallel RLC CircuitResonance in Series RLC CircuitPlanar and Non Planar Graphs of CircuitClipping CircuitMore Related Articles Electric Current and Theory of Electricity | Heating and Magnetic EffectNature of ElectricityDrift Velocity Drift Current and Electron MobilityElectric Current and Voltage Division RuleRMS or Root Mean Square Value of AC SignalWorking Principle of a CapacitorQuality Factor of Inductor and CapacitorTransient Behavior of CapacitorCylindrical CapacitorSpherical CapacitorCapacitors in Series and ParallelHow to Test Capacitors?Electrical Conductance Conductivity of Metal Semiconductor and Insulator | Band TheoryWhat is Electrical Resistance?Resistivity and Laws of ResistanceProperties of Electric ConductorTemperature Coefficient of ResistanceResistance Variation with TemperatureSeries ResistanceActive and Passive Elements of Electrical CircuitElectrical DC Series and Parallel CircuitOhm's Law | Equation Formula and Limitation of Ohm's LawKirchhoff Current Law and Kirchhoff Voltage LawSingle and Multi Mesh AnalysisSuperposition TheoremThevenin Theorem and Thevenin Equivalent Voltage and ResistanceNorton Theorem | Norton Equivalent Current and ResistanceReciprocity TheoremNodal Analysis in Electric CircuitsMaximum Power Transfer TheoremDelta - Star transformation | Star - Delta TransformationMagnetic FieldMagnetic FluxMagnetic PermeabilityHysteresis LoopMagnetic Field and Magnetic Circuit | Magnetic MaterialsMagnetic SaturationEnergy Stored in a Magnetic FieldStatic Electric Field | Electrostatic Induction A Current Carrying Conductor Within A Magnetic FieldMagnetic SusceptibilityHard Magnetic MaterialsSoft Magnetic MaterialsMagnetic Circuit with Air GapElectric ChargeCoulombs Law | Explanation Statement Formulas Principle Limitation of Coulomb’s LawElectric Lines of ForceWhat is Electric Field?Electric Field Strength or Electric Field IntensityWhat is Flux? Types of Flux?Electric FluxElectric PotentialCapacitor and Capacitance | Types of CapacitorsEnergy Stored in CapacitorCharging a CapacitorDischarging a CapacitorFourier Series and Fourier TransformTrigonometric Fourier SeriesAnalysis of Exponential Fourier SeriesMutual InductanceSelf InductanceSI System of UnitsElectrical International SymbolElectric Power Single and Three Phase Power Active Reactive ApparentVector Algebra | Vector DiagramRelationship of Line and Phase Voltages and Currents in a Star Connected SystemVector Diagram | Three Phase Vector DiagramTypes of Resistor Carbon Composition and Wire Wound ResistorVaristor Metal Oxide Varistor is Nonlinear ResistorCarbon Composition ResistorWire Wound ResistorVariable Resistors | Defination, Uses and Types of Variable ResistorsLight Dependent Resistor | LDR and Working Principle of LDRSource of Electrical EnergyVoltage SourceIdeal Dependent Independent Voltage Current SourceVoltage or Electric Potential DifferenceVoltage in SeriesVoltage in ParallelVoltage Drop CalculationVoltage DividerVoltage MultiplierVoltage DoublerVoltage RegulatorVoltage FollowerVoltage Regulator 7805Voltage to Current ConverterNew Articles Collecting Oil Sample from Oil Immersed Electrical EquipmentCauses of Insulating Oil DeteriorationAcidity Test of Transformer Insulating OilMagnetic FluxRing Counter