electrical4u.com logo Home MCQ Engineering Calculators Videos Basic Electrical Circuit Theories Electrical Laws Materials Batteries Illumination Generation Transmission Distribution Switchgear Protection Measurement Control System Utilities Safety Transformer Motor Generator Electrical Drives Electronics Devices Power Electronics Digital Electronics Biomedical Instrumentation

Rankine Cycle for Closed Feed Water Heaters and Rankine Cycle Cogeneration

Published on 24/2/2012 & updated on Friday 11th of May 2018 at 02:56:34 PM

Rankine Cycle with Closed Feed Water Heaters

Rankine cycle with closed feed water heaters are having its benefits and is most commonly used in all modern power plants. Closed feed water heater employs indirect mode of heat transfer, i.e extracted steam or bleed steam from the turbine transfers its heat indirectly to feed water in shell and tube heat exchanger. Since the steam and water are not mixing directly, so both steam and water circuits are at different pressures. Close feed water heater in a cycle is represented on T-s diagram as shown below in Fig:1.
Theoretically or ideally heat transfer in closed feed water heater should be in such a way that the temperature of the feed water should be increased to that of the saturation temperature of the extraction steam (heating the feed water).

But in actual plant operation the maximum temperature which feed water can attend is normally slightly less than that of the saturation-temperature of the steam. The reason may be few degrees temperature gradient is required for the effective and efficient heat transfer. heat addition with closed feed water heater t s diagram This condensate or condense steam from the heater shell shall be transferred to next heater (low- pressure) in the cycle or sometimes to the condenser.

Related pages
Rankine Cycle for Closed Feed Water Heaters and Rankine Cycle Cogeneration

Differentiate Between Open and Closed Feed Water Heater

The open and closed feed water heaters can be differentiated as follows:
Open feed water heaterClosed feed water heater
Open and simpleMore complex in design
Good heat transfer characteristicsLess effective heat transfer
Direct mixing extraction steam and feed water temperature in a pressure vesselIn-direct mixing feed water and steam in a shell and tube type heat exchanger.
Pump is required to transfer the water into next stage in the cycle.Closed feed water pumps don’t require pump and can operate with the pressure difference between the various heaters in the cycle.
Requires more areaRequires less area
Less expansiveMore expensive
All modern day power plants are employing the combination of open and closed feed water heaters to maximise the thermal efficiency of the cycle.

Cogeneration Phenomenon

Art of converting the valuable form of energy called heat to work is thermodynamics, this is done by transferring it to the working fluid called water (in power plants). So the purpose is to avoid the wastage of heat of steam in the steam turbine condensers. This is possible if find the means to use the low pressure steam going into the condenser. Cogeneration is the concept meant for utilising the heat of the steam which is getting waste in the condensers.

Cogeneration means Combined Heat and Power (CHP) that is generation of heat and power simultaneously for the industry requiring process heating steam. In cogeneration plant both heat-and-power are judisiouly utilised so the efficiency of it can be as high as 90% or more. Co-generation offers energy savings. cogeneration principle Cogeneration offers the reduction in wasting of large amount of steam and the same can be utilized in many devices in the form of heat. Most of the industries like paper and pulp, chemical, textile and fiber and cement are depending upon co-generation plant for process heating steam. Process heat steam requirement in above industries are in the order of 4 to 5 kg/cm2 at temperature around 150 to 180oC.

Paper, chemical and textile industries require both electric power and process steam to accomplish their objective. So this requirement can be easily meet through by installing cogeneration power plant. Temperature in inside the boiler is of the order of 800oC to 900oC and the energy is transferred to the water to produce steam of pressure 105 bar and temperature around 535oC for co-generation power plants. Steam at these parameters are considered as of very good quality source of energy and is thus first utilized in steam turbine for producing power and the turbine exhaust (low quality energy) is used to meet the requirement of process steam.

Cogeneration plant is known for meeting the requirement of power while meeting the process steam requirement of Industrial processes. ideal cogeneration plant Ideal steam-turbine co-generation is shown in the figure 2 above. Let us say that the process heat requirement Qp is at 5.0 Kg/cm2 at around 100 KW. In order to meet the process steam requirement at 5.0 Kg/cm2 steam is expanded in the turbine till the pressure of the steam drop to 5.0 Kg/cm2 and thus produces the power around 20 KW. The condensate from process heater is recycled backed to boiler for cyclic operation. Pump work required to raise the pressure of the feed the water in the cycle is considered as small so not considered. All energy transferred to the working fluid in the boiler is used either in steam turbine or in process plant, thus utilization factor of the cogeneration plant is: Where, Qout Heat rejected in the. Thus in the absence of the condenser the heat utilization factor of the cogeneration plant is 100%.

Please Rate this Article
⚑ 0 total

New Articles
More Articles on Generation
Generation of Electric PowerSteam Power StationPumpHydro Power StationNuclear Power StationDiesel Power StationGas Turbine Power StationTariff and EconomicsSolar Power GenerationWind power GenerationFire Protection of Power PlantBoilerSteam SystemCombustionElectrostatic PrecipitatorSteam CondenserDraught and Chimney
Articles Categories
Basic Electrical
Electric Transformer
Electric Generator
Electric Motor
Electrical MCQ
Engineering Calculators
Video Lectures
Electrical Generation
Electric Transmission
Electric Protection
Electrical Measurement
Electronics Devices
Power Electronics
Digital Electronics