# Parallel Adder

**.**

*parallel adder*## Structure of Parallel Adder

Parallel adder is nothing but a cascade of several full adders. The number of full adders used will depend on the number of bits in the binary digits which require to be added.Such a n-bit adder formed by cascading n full adders (FA_{1} to FA_{n}) is as shown by Figure 1 and is used to add two n-bit binary numbers .
Here, every single bit of the numbers to be added is provided at the input pins of every single full adder. That is, the first bits A_{1} and B_{1} are provided as the inputs to full adder (FA_{1}), the second bits A_{2} and B_{2} to the inputs of full adder 2 (FA_{2})… and the last bits A_{n} and B_{n} to the n^{th} full adder FA_{n}. Next, the carry out pin of each full adder in the circuit is connected to the carry in pin of its succeeding full adder (except in the case of last full adder). For example, the carry out pin of FA_{1} (Co_{1}) is connected to carry in pin of FA_{2} (Ci_{2}), the carry out pin of FA_{2} (Co_{2}) is connected to carry in pin of FA_{3} (Ci_{3}) and so on and so forth.

## Working of Parallel Adder

In the circuit shown by Figure 1, first, FA_{1}adds A

_{1}with B

_{1}to generate S

_{1}(the first bit of sum output) and Co

_{1}. Next, FA

_{2}uses this Co

_{1}as its carry in bit and adds it with its input bits A

_{2}and B

_{2}to generate the second bit of the sum output S

_{2}and Co

_{2}. Next, this Co

_{2}is considered as an input by FA

_{3}which adds it with the bits A

_{3}and B

_{3}. This process continues till the nth full adder in the sequence which adds the carry out bit of (n-1)

^{th}full adder (Co

_{n-1}) with its inputs A

_{n}and B

_{n}. When this happens, we would get the output bits S

_{n}and Co

_{n}which are the last bits of our sum output and the expected carry bit, respectively.

## Drawback of Parallel Adders

From the discussion presented we can say that in the case of n-bit**parallel adder**, each adder has to wait for the carry term to be generated from its preceding adder in order to finish its task of adding. This can be visualized as if the carry term propagates along the chain in the fashion of a ripple. Thus these kind of adders are even referred to as ripple carry adders. Further, the delay associated with the travelling of carry bit is called carry propagation delay and is found to worsen with an increase in the length of the binary numbers which require to be added. For example, if each full adder is considered to have a delay of 10 ns, then the total delay required to produce the output of a 4-bit

**parallel adder**would be 4 × 10 = 40 ns.

Closely Related Articles Binary Adder Half and Full AdderBinary SubstractorSeven Segment DisplayBinary to Gray Code Converter and Grey to Binary Code ConverterBinary to BCD Code ConverterAnalog to Digital ConverterDigital Encoder or Binary EncoderBinary DecoderBasic Digital CounterDigital ComparatorBCD to Seven Segment DecoderParallel Adder or SubtractorMultiplexerDemultiplexerMore Related Articles Digital ElectronicsBoolean Algebra Theorems and Laws of Boolean AlgebraDe Morgan Theorem and Demorgans LawsTruth Tables for Digital LogicBinary Arithmetic Binary AdditionBinary SubtractionSimplifying Boolean Expression using K MapBinary DivisionExcess 3 Code Addition and SubtractionK Map or Karnaugh MapSwitching Algebra or Boolean AlgebraBinary MultiplicationParallel SubtractorOR Operation | Logical OR OperationAND Operation | Logical AND OperationLogical OR GateLogical AND GateNOT GateUniversal Gate | NAND and NOR Gate as Universal GateNAND GateDiode and Transistor NAND Gate or DTL NAND Gate and NAND Gate ICsX OR Gate and X NOR GateTransistor Transistor Logic or TTLNOR GateFan out of Logic GatesINHIBIT GateNMOS Logic and PMOS LogicSchmitt GatesLogic Families Significance and Types of Logic FamiliesBinary Number System | Binary to Decimal and Decimal to Binary ConversionBinary to Decimal and Decimal to Binary ConversionBCD or Binary Coded Decimal | BCD Conversion Addition SubtractionBinary to Octal and Octal to Binary ConversionOctal to Decimal and Decimal to Octal ConversionBinary to Hexadecimal and Hex to Binary ConversionHexadecimal to Decimal and Decimal to Hexadecimal ConversionGray Code | Binary to Gray Code and that to Binary ConversionOctal Number SystemDigital Logic Gates2′s Complement1′s ComplementASCII CodeHamming Code2s Complement ArithmeticError Detection and Correction Codes9s complement and 10s complement | SubtractionSome Common Applications of Logic GatesKeyboard EncoderAlphanumeric codes | ASCII code | EBCDIC code | UNICODELatches and Flip FlopsS R Flip Flop S R LatchActive Low S R Latch and Flip FlopGated S R Latches or Clocked S R Flip FlopsD Flip Flop or D LatchJ K Flip FlopMaster Slave Flip FlopRead Only Memory | ROMProgrammable Logic DevicesProgrammable Array LogicApplication of Flip FlopsShift RegistersBuffer Register and Controlled Buffer RegisterData Transfer in Shift RegistersSerial In Serial Out (SISO) Shift RegisterSerial in Parallel Out (SIPO) Shift RegisterParallel in Serial Out (PISO) Shift RegisterParallel in Parallel Out (PIPO) Shift RegisterUniversal Shift RegistersBidirectional Shift RegisterDynamic Shift RegisterUninterruptible Power Supply | UPSConversion of Flip FlopsNew Articles Voltage SensorFlow MeasurementVoltage in ParallelVoltage in SeriesVoltage Regulator 7805How to Use a Digital Multimeter?