electrical4u.com logo Home MCQ Engineering Calculators Videos Basic Electrical Circuit Theories Electrical Laws Materials Batteries Illumination Generation Transmission Distribution Switchgear Protection Measurement Control System Utilities Safety Transformer Motor Generator Electrical Drives Electronics Devices Power Electronics Digital Electronics Biomedical Instrumentation

Nyquist Plot

Published on 24/2/2012 & updated on Saturday 14th of July 2018 at 06:21:47 PM
The stability analysis of a feedback control system is based on identifying the location of the roots of the characteristic equation on s-plane. The system is stable if the roots lie on left hand side of s-plane. Relative stability of a system can be determined by using frequency response methods like Nyquist plot and Bode plot. Nyquist criterion is used to identify the presence of roots of a characteristic equation in a specified region of s-plane. To understand Nyquist plot we need to know about some of the terminologies.
Contour : Closed path in a complex plane is called contour.

Nyquist path or Nyquist contour

The Nyquist contour is a closed contour in the s-plane which completely encloses the entire right hand half of s-plane. In order to enclose the complete RHS of s-plane a large semicircle path is drawn with diameter along jω axis and centre at origin. The radius of the semicircle is treated as Nyquist Encirclement.

Nyquist Encirclement

A point is said to be encircled by a contour if it is found inside the contour.

Nyquist Mapping

The process by which a point in s-plane is transformed into a point in F(s) plane is called mapping and F(s) is called mapping function.

Steps of drawing the Nyquist path

 is the Open loop transfer function (O.L.T.F)

 is the Closed loop transfer function (C.L.T.F) N(s) = 0 is the open loop zero and D(s) is the open loop pole From stability point of view no closed loop poles should lie in the RH side of s-plane. Characteristics equation 1 + G(s) H(s) = 0 denotes closed loop poles .  Now as 1 + G(s) H(s) = 0 hence q(s) should also be zero.  Therefore , from the stability point of view zeroes of q(s) should not lie in RHP of s-plane. To define the stability entire RHP (Right Hand Plane) is considered. We assume a semicircle which encloses all points in the RHP by considering the radius of the semicircle R tends to infinity. [R → ∞].

The first step to understand the application of Nyquist criterion in relation for determination of stability of control systems is mapping from s-plane to G(s) H(s) - plane. s is considered as independent complex variable and corresponding value of G(s) H(s) being the dependent variable plotted in another complex plane called G(s) H(s) - plane. Thus for every point in s-plane there exists a corresponding point in G(s) H(s) - plane. During the process of mapping the independent variable s is varied along a specified path in s - plane and the corresponding points in G(s)H(s) plane are joined. This completes the process of mapping from s-plane to G(s)H(s) - plane. Nyquist stability criterion says that N = Z - P. Where, N is the total no. of encirclement about the origin, P is the total no. of poles and Z is the total no. of zeroes. Case 1 :- N = 0 (no encirclement), so Z = P = 0 and Z = P If N = 0, P must be zero therefore system is stable. Case 2 :- N > 0 (clockwise encirclement), so P = 0, Z ≠0 and Z > P For both cases system is unstable. Case 3 :- N < 0 (counter clockwise encirclement), so Z = 0, P ≠0 and P > Z System is stable.

Please Rate this Article
⚑ 2 total

New Articles
More Articles on Control System
Control EngineeringFourier
Articles Categories
Basic Electrical
Electric Transformer
Electric Generator
Electric Motor
Electrical MCQ
Engineering Calculators
Video Lectures
Electrical Generation
Electric Transmission
Electric Protection
Electrical Measurement
Electronics Devices
Power Electronics
Digital Electronics