× Home Basic Electrical Circuit Theories Electrical Laws Materials Batteries Illumination Generation Transmission Distribution Switchgear Protection Measurement Control System Utilities Safety Transformer Motor Generator Electrical Drives Electronics Devices Power Electronics Digital Electronics MCQ Videos Forum

Load Flow or Power Flow Analysis

It is the computational procedure (numerical algorithms) required to determine the steady state operating characteristics of a power system network from the given line data and bus data.load flow or power flow analysis

Things you must know about load flow:

  1. Load flow study is the steady state analysis of power system network.
  2. Load flow study determines the operating state of the system for a given loading.
  3. Load flow solves a set of simultaneous non linear algebraic power equations for the two unknown variables (|V| and ∠δ ) at each node in a system.
  4. To solve non linear algebraic equations it is important to have fast, efficient and accurate numerical algorithms.
  5. The output of the load flow analysis is the voltage and phase angle, real and reactive power (both sides in each line), line losses and slack bus power.

Load Flow Steps

The study of load flow involves the following three steps:
  1. Modeling of power system components and network.
  2. Development of load flow equations.
  3. Solving the load flow equations using numerical techniques.

Modeling of Power System Components

Generator modeling of power system components

Load modeling of power system components Transmission Line A Transmission line is represented as a nominal π model. Where, R + jX is the line impedance and Y/2 is called the half line charging admittance.

Off Nominal Tap Changing Transformer For a nominal transformer the relation But for an off nominal transformer Thus for an off nominal transformer we define the transformation ratio (a) as follows Now we would like to represent an off nominal transformer in a line by an equivalent model. line containing an off nominal transformer Fig 2: Line Containing an Off Nominal Transformer We want to convert the above into an equivalent π model between bus p and q. equivalent π model of line Fig 3: Equivalent π Model of Line

Our aim is to find these values of admittances Y1, Y2 and Y3 so that fig2 can be represented by fig 3 From Fig 2 we have, Now consider Fig 3, from fig3 we have, From eqn I and III on comparing the coefficients of Ep and Eq we get, Similarly from equation II and IV we have Some useful observations From above analysis we see that Y2, Y3 values can either be positive or negative depending on the value of transformation ratio. Good question! Y = - ve implies absorption of reactive power i.e it is behaving as an inductor. Y = + ve implies generation of reactive power i.e it is behaving as a capacitor. Modeling of a Network modeling of a network Consider the two bus system as shown in figure above. We have already seen that Power generated at bus i is Power demand at bus i is Therefore we define the net power injected at bus i as follows



Comments

Related Articles Corona EffectFerranti EffectAdvantages of Three Phase SystemInductance of Single ConductorInductance in Three Phase LinePower System StabilityLoad Flow AnalysisTransient StabilityFlexible AC Transmission SystemsTariff of ElectricityPower FactorSkin EffectInductance of Single Phase SystemAuto RecloserLoad Flow and Y BusEqual Area CriterionSteady State StabilityMore Related Articles Capacitor BankTransmission LineSubstationInsulatorTowerEarthingReactorCableNew Articles How to Make an Electric Water Pump?Voltage RegulatorsTuned Collector OscillatorPIN DiodeElectrostatic Precipitator Efficiency Articles Categories MCQ Contact Us Basic Electrical Circuit Theories Electrical Laws Materials Batteries Illumination Generation Transmission Distribution Switchgear Protection Measurement Control System Utilities Safety Transformer Motor Generator Electrical Drives Electronics Devices Power Electronics Digital Electronics Videos