ONLINE ELECTRICAL ENGINEERING STUDY SITE

Intrinsic Semiconductor

Semiconductor is a material whose conductivity lies in-between that of the conductors and the insulators. Semiconductors which are chemically pure, meaning free of impurities, are called Intrinsic Semiconductors or Undoped Semiconductor or i-type Semiconductor. The most common intrinsic semiconductors are Silicon (Si) and Germanium (Ge), which belong to Group IV of the periodic table. The atomic numbers of Si and Ge are 14 and 32, which yields their electronic configuration as 1s2 2s2 2p6 3s2 3p2 and 1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p2, respectively. This indicates that both Si and Ge have four electrons each in their outer-most i.e. valence shell (indicated by red colour). These electrons are called valence electrons and are responsible for the conduction-properties of the semiconductors.

Crystal lattice of Silicon (it is the same even for Germanium) in two-dimension is as shown in Figure 1. Here it is seen that each valence electron of a Si atom pairs with the valence electron of the adjacent Si atom to form covalent bond.
After pairing, the intrinsic semiconductor will be deprived of free charge carriers which are nothing but the valence electrons. Hence, at 0K the valence band will be full of electrons while the conduction band will be empty (Figure 2a). At this stage, no electron in the valence band would gain enough energy to cross the forbidden energy gap of the semiconductor material. Thus the intrinsic semiconductors act as insulators at 0K. 2-d crystal lattice of silicon However at room temperature, the thermal energy may cause a few of the covalent bonds to break, thus generating the free electrons as shown by Figure 3a. The electrons thus generated get excited and move into the conduction band from the valence band, overcoming the energy barrier (Figure 2b). During this process, each electron leaves behind a hole in the valence band. The electrons and holes created in this way are called intrinsic charge carriers and are responsible for the conductive properties exhibited by the intrinsic semiconductor material.
Although the intrinsic semiconductors are capable of conducting at room temperature, it is to be noted that the conductivity so exhibited is low as there are only a few charge carriers. But as the temperature increases, more and more covalent bonds break which results in more and more number of free electrons. This in turn results in the movement of greater number of electrons into the conduction band from the valence band. As the population of the electrons in the conduction band increases, the conductivity of the intrinsic semiconductor also increases. However, the number of electrons (ni) in the intrinsic semiconductor remains always equal to the number of holes in it (pi).

On applying an electric field to such an intrinsic semiconductor, the electron-hole pairs can be made to drift under its influence. In this case, the electrons move in the direction opposite to that of the applied field while the holes move in the direction of the electric field as shown by Figure 3b. This means that the direction along which the electrons and the holes move are mutually opposite. This is because, as an electron of a particular atom moves towards say, left, by leaving a hole in its place, the electron from the neighboring atom occupies its place by recombining with that hole. However while doing so, it would have left one more hole in its place. This can be viewed as the movement of the holes (towards right side in this case) in the semiconductor material. These two movements, although opposite in direction, result in the total flow of current through the semiconductor. energy band diagram of intrinsic semiconductor conduction mechanism in case of intrinsic semiconductors Mathematically the charge carrier densities in intrinsic semiconductors are given by Here,
Nc is the effective densities of states in the conduction band.
Nv is the effective densities of states in the valence band.
is the Boltzmann constant.
T is the temperature.
EF is the Fermi energy.
Ev indicates the level of valence band.
Ec indicates the level of conduction band.
is the Planck constant.
mh is the effective mass of a hole.
me is the effective mass of an electron.




Closely Related Articles Theory of SemiconductorExtrinsic SemiconductorsEnergy Bands of SiliconDonor and Acceptor Impurities in Semiconductor Conductivity of SemiconductorCurrent Density in Metal and Semiconductor Intrinsic Silicon and Extrinsic SiliconP Type SemiconductorN Type SemiconductorP N Junction Theory Behind P N JunctionForward and Reverse Bias of P N JunctionZener BreakdownAvalanche BreakdownHall Effect Applications of Hall EffectGallium Arsenide SemiconductorSilicon SemiconductorMore Related Articles Op-amp | Working Principle of Op-ampAmplifier Gain | Decibel or dB GainIntegrated Circuits | Types of ICRegulated Power SupplyLaser | Types and Components of LaserWork FunctionMobility of Charge CarrierWhat are Photo Electrons? Electron volt or eVEnergy Quanta | Development of Quantum Physics Schottky EffectHeisenberg Uncertainty PrincipleSchrodinger Wave Equation and Wave FunctionCyclotron Basic Construction and Working PrincipleSinusoidal Wave SignalCommon Emitter AmplifierRC Coupled AmplifierDifferential AmplifierWave Particle Duality PrincipleSpace ChargeInverting AmplifierVacuum Diode History Working Principle and Types of Vacuum DiodePN Junction Diode and its CharacteristicsDiode | Working and Types of DiodeDiode CharacteristicsHalf Wave Diode RectifierFull Wave Diode RectifierDiode Bridge RectifierWhat is Zener Diode?Application of Zener DiodeLED or Light Emitting DiodePIN Photodiode | Avalanche PhotodiodeTunnel Diode and its ApplicationsGUNN DiodeVaractor DiodeLaser DiodeSchottky DiodePower DiodesDiode ResistanceDiode Current EquationIdeal DiodeReverse Recovery Time of DiodeDiode TestingMOSFET | Working Principle of p-channel n-channel MOSFETMOSFET CircuitsMOS Capacitor | MOS Capacitance C V CurveApplications of MOSFETMOSFET as a SwitchMOSFET CharacteristicsPower MOSFETHalf Wave RectifiersFull Wave RectifiersBridge RectifiersClamping CircuitTypes of TransistorsBipolar Junction Transistor or BJTBiasing of Bipolar Junction Transistor or BJTTransistor BiasingTransistor CharacteristicsCurrent Components in a TransistorTransistor Manufacturing TechniquesApplications of Bipolar Junction Transistor or BJT | History of BJTTransistor as a SwitchTransistor as an AmplifierJFET or Junction Field Effect Transistorn-channel JFET and p-channel JFETApplications of Field Effect TransistorDIAC Construction Operation and Applications of DIACTRIAC Construction Operation and Applications of TRIACPhototransistorNew Articles Ring CounterDischarging a CapacitorCharging a CapacitorElectric PotentialParity GeneratorElectric Flux