× Home MCQ Videos Basic Electrical Circuit Theories Electrical Laws Materials Batteries Illumination Generation Transmission Distribution Switchgear Protection Measurement Control System Utilities Safety Transformer Motor Generator Electrical Drives Electronics Devices Power Electronics Digital Electronics

Ferroelectric Materials

The first discovered ferroelectric material is Rochelle salt by Valasek in 1921. These materials can produce spontaneous polarization. By inverting the direction of applied electrical field, the direction of polarization of these materials can be inverted or changed (figure 1). This is called switching. It can also maintain the polarisation even once the field is removed. These materials have some similarities over ferromagnetic materials which reveal permanent magnetic moment. The hysteresis loop is almost same for both materials. Since, there are similarities; the prefix is same for both the materials. But all the ferroelectric material must not have Ferro (iron). All the ferroelectric materials exhibit piezoelectric effect. The opposed properties of these materials are seen in antiferromagnetic materials.

ferroelectric materials

Theory of Ferroelectric Materials

The free energy of ferroelectric material based on Ginburg-Landau theory without electric field and any applied stress can be written as Taylor expansion. It is written in terms of P (order parameter) as

(if sixth order expansion is used) Px → component of polarization vector, x Py → component of polarization vector, y Pz → component of polarization vector, z αi, αij, αijk → coefficients should be constant with the crystal symmetry. α0 > 0, α111> 0 → for all ferroelectrics α11< 0 → ferroelectrics with first order transition α0 > 0 → ferroelectrics with second order transition

For investigating different phenomenon and domain formation in ferroelectrics, these equations are used in phase field model. Usually, it is used by adding some terms such as an elastic term, a gradient term and an electrostatic term to this free energy equation. Using finite difference method, the equations are solved subject to the constraints of Linear elasticity and Gauss’s law. For a cubic to tetragonal phase transition of a spontaneous polarization of a ferroelectric can be obtained from the expression for free energy It has a character of dual well potential with double energy minima at P = ± Ps Ps → spontaneous polarization By simplifying, eliminating the negative root and substitute α11 = 0 we get,

Polarization and Hysteresis Loop

First we take a dielectric material and a peripheral electric field is given, then we can see that the polarization will be always directly proportional to the applied field which is represented in figure 2. ferroelectric materials Next; when we polarise a paraelectric material, we get a non linear polarization. However it is a function of field as shown in figure 3. ferroelectric materials Next, we take a ferroelectric material and electric field is given to it. We get a non linear polarization. It also exhibit nonzero spontaneous polarization without a peripheral field. We can also see that by inverting the direction of applied electrical field, the direction of polarization can be inverted or changed.

Thus, we can say that, the polarization will depend on the present as well as the previous condition of electric field. The hysteresis loop is obtained as in figure 4. ferroelectric materials

Curie Temperature

The properties of these materials exist only below a definite phase conversion temperature. Above this temperature, the material will become paraelectric materials. That is, loss in spontaneous polarization. This definite temperature is called Curie temperature (TC). Most of these materials above Tc will loss the piezoelectric property as well. The variation of dielectric constant by means of temperature in the non polar, paraelectric state is shown by Curie-Weiss law as given below ε → Dielectric constant ε → ε at temperature, T >> TC A → Constant TC → Curie point T → Temperature χ → Susceptibility CC → Curie constant of the material The dielectric constant and temperature characteristic of a ferroelectric material are represented below.

Examples of Ferroelectric Materials

Application of Ferroelectric Materials



Comments

Related Articles Electrical Engineering MaterialsAtomAtomic Energy LevelsClassification MaterialsClassification of Electrical MaterialsElectron Configuration of AtomProperties of MaterialsMechanical Properties MaterialsRutherford Atomic ModelBohrs Atomic Model Chemical Properties of MaterialsEnergy Bands in CrystalsProperties of MaterialsFermi Dirac Distribution FunctionMagnetic Properties MaterialsThermionic EmissionSelection of MaterialsExistence of Properties in MaterialsQuantum NumbersConducting MaterialHigh Resistive MaterialsFactors Effecting ResistivityMaterials Used for Heating ElementsMaterials Used for Precious WorksMaterials Used for Transmission Line ConductorStranded ConductorsElectrical ConductorMaterials used for RheostatsMaterials for Lamp FilamentsClassification Conducting MaterialsApplications of Carbon MaterialsElectrical Contact MaterialsBimetalsIonic PolarizationPiezoelectricityDielectric MaterialsMechanism of PolarizationDielectric MaterialOrientational PolarizationElectric Arc FurnaceThermal Conductivity of MetalsFree Electron TheoryMagnetostrictionAntiferroelectricityFerroelectric MaterialsElectronic PolarizationFerromagnetic MaterialsMore Related Articles AtomSuperconductorNew Articles Fiber Optic Cable SelectionNatural Gas Power GeneratorsHow to Choose the Best Theater Lighting Equipment?How to Make an Electric Water Pump?Voltage Regulators Articles Categories MCQ Contact Us Basic Electrical Circuit Theories Electrical Laws Materials Batteries Illumination Generation Transmission Distribution Switchgear Protection Measurement Control System Utilities Safety Transformer Motor Generator Electrical Drives Electronics Devices Power Electronics Digital Electronics Videos