# Electric Power

Voltage and current are two basic parameters of an electric circuit. But, only voltage and current are not sufficient to express the behaviour an electric circuit element. We essentially need to know, how much

Let us take a resistor connected across two circuit terminals. Although, the rest of the circuit is not shown here in the figure. The polarity of the voltage drop across the resistor and the direction of current through the resistor are shown in the figure below. The resistor is consuming a power of vi watts as current i ampere enters in the resistor though its positive side of the dropped voltage v volt, as shown. Let us take a battery connected across two circuit terminals. Although, the rest of the circuit is not shown here in the figure. The polarity of the voltage drop across the battery and the direction of current through the battery are shown in the figure below. The battery is delivering a power of vi watts as current i ampere enters in the battery of v volt through its positive polarity terminal as shown.

**electric power**, a circuit element can handle. All of us have seen that a 60 watts electric lamp gives less light than a 100 watts electric lamp. When we pay electric bill for electricity consumption, we are actually paying the cahrges for**electric power**for a specified period of time. Thus**electric power**calculation is quite essential for analyzing an electric circuit or network.Power is the rate of energy supplied or consumed by an electric element with respect to time.

Suppose, an element supplies or consumes an energy of dw joules for a time of dt second, then power of the element can be represented as, This equation can also be rewritten as, Hence, from the As the expression of voltage and current in the equation are instantaneous, the power is also instantaneous. The expressed power is time-varying. So, the power of a circuit element is the product of voltage across the element and current through it. As we have already told that a circuit element can either absorb or deliver power. We represent the absorption of power by putting a positive sign (+) in the expression of power. Likewise, we put a negative sign (-) when we represent the power delivered by the circuit element.

### Passive Sign Convention

There is a simple relationship between the direction of current, polarity of voltage and sign of the power of a circuit element. We call this simple relationship as**passive sign convention**. When a current enters in an element through its terminal of positive voltage polarity, we put a positive sign (+) before the product of the voltage and current. This implies that the element absorbs or consumes power from the electric circuit. On the other hand, when the current through the element leaves its terminal of positive voltage polarity, we put a negative sign (-) before the product of the voltage and current. This implies that the element delivers or supplies power to the electric circuit.Let us take a resistor connected across two circuit terminals. Although, the rest of the circuit is not shown here in the figure. The polarity of the voltage drop across the resistor and the direction of current through the resistor are shown in the figure below. The resistor is consuming a power of vi watts as current i ampere enters in the resistor though its positive side of the dropped voltage v volt, as shown. Let us take a battery connected across two circuit terminals. Although, the rest of the circuit is not shown here in the figure. The polarity of the voltage drop across the battery and the direction of current through the battery are shown in the figure below. The battery is delivering a power of vi watts as current i ampere enters in the battery of v volt through its positive polarity terminal as shown.

Closely Related Articles Series and Parallel Inductors Measurement of Insulation ResistancePhase Synchronizing Device or Controlled Switching DeviceElectric Current and Theory of Electricity | Heating and Magnetic EffectNature of ElectricityDrift Velocity Drift Current and Electron MobilityRMS or Root Mean Square Value of AC SignalMore Related Articles Working Principle of a CapacitorQuality Factor of Inductor and CapacitorTransient Behavior of CapacitorCylindrical CapacitorSpherical CapacitorCapacitors in Series and ParallelHow to Test Capacitors?Electrical Conductance Conductivity of Metal Semiconductor and Insulator | Band TheoryWhat is Electrical Resistance?Resistivity and Laws of ResistanceProperties of Electric ConductorTemperature Coefficient of ResistanceResistance Variation with TemperatureCircuit Elements - Active Passive Elements of Electrical CircuitElectrical DC Series and Parallel CircuitMagnetic FieldMagnetic FluxMagnetic PermeabilityHysteresis LoopMagnetic CircuitMagnetic SaturationEnergy Stored in a Magnetic FieldStatic Electric Field | Electrostatic Induction A Current Carrying Conductor within a Magnetic FieldMagnetic SusceptibilityHard Magnetic MaterialsSoft Magnetic MaterialsMagnetic Circuit with Air GapElectric ChargeCoulomb's Law | Explanation Statement Formulas Principle Limitation of Coulomb’s LawElectric Lines of ForceWhat is Electric Field?Electric Field Strength or Electric Field IntensityWhat is Flux? Types of Flux?Electric FluxElectric PotentialCapacitor and Capacitance | Types of CapacitorsEnergy Stored in CapacitorCharging a CapacitorDischarging a CapacitorFourier Series and Fourier TransformTrigonometric Fourier SeriesAnalysis of Exponential Fourier SeriesParity GeneratorDual NetworkTime ConstantElectric Circuit or Electrical NetworkSeries Parallel Battery CellsRL Series CircuitWhat is Inductor and Inductance | Theory of InductorRLC CircuitThree Phase Circuit | Star and Delta SystemRL Parallel CircuitRL Circuit Transfer Function Time Constant RL Circuit as FilterConstruction of AC Circuits and Working of AC CircuitsSeries RLC CircuitParallel RLC CircuitResonance in Series RLC CircuitPlanar and Non Planar Graphs of CircuitClipping CircuitMutual InductanceSelf InductanceSI System of UnitsElectrical International SymbolElectric Power Single and Three Phase Power Active Reactive ApparentVector Algebra | Vector DiagramRelationship of Line and Phase Voltages and Currents in a Star Connected SystemVector Diagram | Three Phase Vector DiagramTypes of Resistor Carbon Composition and Wire Wound ResistorVaristor Metal Oxide Varistor is Nonlinear ResistorCarbon Composition ResistorWire Wound ResistorVariable Resistors | Defination, Uses and Types of Variable ResistorsLight Dependent Resistor | LDR and Working Principle of LDRVoltage SourceIdeal Dependent Independent Voltage Current SourceVoltage or Electric Potential DifferenceVoltage Drop CalculationVoltage DividerVoltage MultiplierVoltage DoublerVoltage RegulatorVoltage FollowerVoltage Regulator 7805Voltage to Current ConverterNew Articles Series and Parallel Inductors Electric PowerMeasurement of Losses in Shunt ReactorThree Phase Shunt ReactorMeasurement of Insulation ResistanceAmpere's Circuital Law