ONLINE ELECTRICAL ENGINEERING STUDY SITE

A Current Carrying Conductor Within A Magnetic Field

Oersted had established that a compass needle gets deflected in the vicinity of a current carrying conductor i.e. this conductor exerts a force on the compass needle. Later on, in the year 1821, Michael Faraday discovered that a current carrying conductor also gets deflected when it is placed in a magnetic field. This can be said that magnetic field and this current carrying conductor exert a force on each other in their vicinity.
Suppose a conductor carries current I and it is with the length (l). As it is carrying current (DC), some flux lines will be generated around the conductor and they are concentric with the central axis of the conductor. So an electromagnetic field is established due to this current through this conductor.

Following right hand thumb rule the magnetic flux lines get the direction along the bent fingers when thumb denotes the direction of the current flow, i.e. shown in the figure below. right hand rule This current carrying conductor is placed between two poles of a horse shoe magnet of flux density . This magnet is tightly fixed to the ground. Conductor is not fixed, rather it is free to move. The length of the conductor is just perpendicular of the permanent magnetic field of the horse shoe.
So, it is clear that the direction of current and magnetic field is normal to each other. A Current Carrying Conductor Within A Magnetic Field Now two magnetic fields (electromagnetic field by the conductor and permanent magnetic field by the horse shoe magnet) are in their action. Current Carrying Conductor in Magnetic Field The concentric circles of electromagnetic flux due to flowing current (I) through this conductor try to repel the magnetic flux of the permanent magnet at that situation. Let us consider the force is  . Here the direction of the current depends on the orientation of length of the current carrying conductor (l), so vector is taken for length only. The force  is the cross product of length vector () and the flux density vector (). Now, Here, θ is the angle between two vectors and is the unit vector of the force in the perpendicular direction with respect to two vectors direction. force on conductor in magnetic field In This direction of force the conductor will move to. This consequent can be simplified with an easy rule, i.e. Fleming’s Left Hand rule. By stretching three fingers of left hand in perpendicular manner with each other, if the direction of the current is denoted by middle finger of the left hand and the second finger is for direction of the magnetic flux then the thumb of the left hand denotes the direction of the conductor’s movement. fleming’s left hand rule Now the direction of the current through this conductor depends on the conductor in which orientation the conductor is placed between two poles of the magnet. So the current carrying conductor always faces a force in the vicinity of a permanent magnet or any electro-magnet. Based on this phenomenon DC motor rotates.




Comments/Feedbacks






Closely Related Articles Magnetic FieldMagnetic FluxMagnetic PermeabilityHysteresis LoopMagnetic Field and Magnetic Circuit | Magnetic MaterialsMagnetic SaturationEnergy Stored in a Magnetic FieldStatic Electric Field | Electrostatic Induction Magnetic SusceptibilityHard Magnetic MaterialsSoft Magnetic MaterialsMagnetic Circuit with Air GapMore Related Articles Electric Current and Theory of Electricity | Heating and Magnetic EffectNature of ElectricityDrift Velocity Drift Current and Electron MobilityElectric Current and Voltage Division RuleRMS or Root Mean Square Value of AC SignalWorking Principle of a CapacitorQuality Factor of Inductor and CapacitorTransient Behavior of CapacitorCylindrical CapacitorSpherical CapacitorCapacitors in Series and ParallelHow to Test Capacitors?Electrical Conductance Conductivity of Metal Semiconductor and Insulator | Band TheoryWhat is Electrical Resistance?Resistivity and Laws of ResistanceProperties of Electric ConductorTemperature Coefficient of ResistanceResistance Variation with TemperatureSeries ResistanceActive and Passive Elements of Electrical CircuitElectrical DC Series and Parallel CircuitOhm's Law | Equation Formula and Limitation of Ohm's LawKirchhoff Current Law and Kirchhoff Voltage LawSingle and Multi Mesh AnalysisSuperposition TheoremThevenin Theorem and Thevenin Equivalent Voltage and ResistanceNorton Theorem | Norton Equivalent Current and ResistanceReciprocity TheoremNodal Analysis in Electric CircuitsMaximum Power Transfer TheoremDelta - Star transformation | Star - Delta TransformationElectric ChargeCoulombs Law | Explanation Statement Formulas Principle Limitation of Coulomb’s LawElectric Lines of ForceWhat is Electric Field?Electric Field Strength or Electric Field IntensityWhat is Flux? Types of Flux?Electric FluxElectric PotentialCapacitor and Capacitance | Types of CapacitorsEnergy Stored in CapacitorCharging a CapacitorDischarging a CapacitorFourier Series and Fourier TransformTrigonometric Fourier SeriesAnalysis of Exponential Fourier SeriesParity GeneratorElectric Circuit and Electrical Circuit ElementsSeries Parallel Battery CellsRL Series CircuitWhat is Inductor and Inductance | Theory of InductorRLC CircuitThree Phase Circuit | Star and Delta SystemRL Parallel CircuitRL Circuit Transfer Function Time Constant RL Circuit as FilterConstruction of AC Circuits and Working of AC CircuitsSeries RLC CircuitParallel RLC CircuitResistances in Series and Resistances in ParallelResonance in Series RLC CircuitPlanar and Non Planar Graphs of CircuitClipping CircuitMutual InductanceSelf InductanceSI System of UnitsElectrical International SymbolElectric Power Single and Three Phase Power Active Reactive ApparentVector Algebra | Vector DiagramRelationship of Line and Phase Voltages and Currents in a Star Connected SystemVector Diagram | Three Phase Vector DiagramTypes of Resistor Carbon Composition and Wire Wound ResistorVaristor Metal Oxide Varistor is Nonlinear ResistorCarbon Composition ResistorWire Wound ResistorVariable Resistors | Defination, Uses and Types of Variable ResistorsLight Dependent Resistor | LDR and Working Principle of LDRSource of Electrical EnergyVoltage SourceIdeal Dependent Independent Voltage Current SourceVoltage or Electric Potential DifferenceVoltage in SeriesVoltage in ParallelVoltage Drop CalculationVoltage DividerVoltage MultiplierVoltage DoublerVoltage RegulatorVoltage FollowerVoltage Regulator 7805Voltage to Current ConverterNew Articles Collecting Oil Sample from Oil Immersed Electrical EquipmentCauses of Insulating Oil DeteriorationAcidity Test of Transformer Insulating OilMagnetic FluxRing Counter