Step Up Transformer

The transformer is static electrical equipment which transforms electrical energy (from primary side windings) to the magnetic energy (in transformer magnetic core) and again to the electrical energy (on these secondary transformer side). The operating frequency and nominal power are approximately equal on primary and secondary transformer side because the transformer is a very efficient equipment, while the voltages and currents values are usually different. Essentially, that is the main task of the transformer, converting high voltage (HV) and low current from the primary side to the low voltage (LV) and high current on the secondary side and vice versa. Also, a transformer with its operation principle provides galvanic isolation in the electrical system.

With those features, the transformer is the most important part of the electrical system and provides economical and reliable transmission and distribution of electrical energy. The transformer can transfer energy in both directions, from HV to LV side as well as inversely. That is the reason why it can work as voltage step up or step down transformer. Both transformer types have the same design and construction. Any transformer can operate as step-up or step-down type. It is only depending on the energy flows direction.step up transformer The HV windings contain a huge number of turns compared with the LV windings. An LV winding wire has bigger cross-section than HV wire because of higher current value on the LV side. Usually, the LV windings are placed close to the transformer core and over them the HV windings are wounded.

Transformer turns ratio is approximately proportional to the voltage ratio (, where U1,2 are voltages and N1,2 are the turns numbers on HV and LV side). The primary side of a step-up transformer has a small number of turns (LV side) while the transformer secondary side has many number of turns (HV side). That means an energy flows from the LV to HV side. The most important application of step-up transformer is a generator step-up (GSU) transformer which is used in all generating plants. Those transformers usually have large turns ratio value. The voltage value produced in energy generation is increased and prepared to the long distance energy transmission. The energy produced in generating plant is characterized by allow voltage and high current value. Depending on the generating plant type, the GSU transformer has nominal primary voltage value from 6 up to 20 kV. The nominal voltage value of GSU secondary side can be 110 kV, 220 kV, 410 kV depending on energy transmission system which is connected to the GSU secondary side. The current value on the primary GSU side is usually very high and depending on the nominal transformer power can reach even 30000 A. This current value is not practical for energy transmission and has to be decreased because of the transmission power losses (R × I2). Long distance energy transmission would not be possible. Besides the GSU transformer also makes galavnic isolation between the generator and electrical network.

Applications of Step Up Transformer

The small step-up transformers can be used in electronic and electrical devices where the voltage boosting is required. But nowadays in the modern electronic device, power electronic circuits are more frequently used because of weight and dimension.


Haitham Jasim posted this comment on 18-08-17 12:47:16 am
Haitham Jasim posted this comment on 18-08-17 12:46:54 am
that's good ...thanks

Closely Related Articles Electrical Power Transformer | Definition and Types of TransformerStep Down TransformerWhat is Auto Transformer ?High Voltage TransformerDistribution Transformer | All Day Efficiency of Distribution TransformerDry Type TransformerAir Core TransformerDesign of Inductor in Switched Mode Power Supply SystemsDesign of High Frequency Pulse TransformerSingle Phase TransformerToroidal TransformerMore Related Articles What is transformer? Definition and Working Principle of TransformerEMF Equation of Transformer | Turns Voltage Transformation Ratio of TransformerIdeal TransformerTheory of Transformer on Load and No Load OperationResistance and Leakage Reactance or Impedance of TransformerEquivalent Circuit of Transformer referred to Primary and SecondaryHysteresis Eddy Current Iron or Core Losses and Copper Loss in TransformerVoltage Regulation of TransformerSingle Three Phase Transformer vs Bank of Three Single Phase TransformersParallel operation of TransformersMagnetizing Inrush Current in Power TransformerInstrument TransformersCurrent Transformer CT class Ratio Error Phase Angle Error in Current TransformerVoltage Transformer or Potential Transformer TheoryKnee Point Voltage of Current Transformer PS ClassAccuracy Limit Factor and Instrument Security Factor of Current TransformerIsolation TransformerTransformer Insulating Oil and Types of Transformer OilCauses of Insulating Oil DeteriorationCollecting Oil Sample from Oil Immersed Electrical EquipmentAcidity Test of Transformer Insulating OilDGA or Dissolved Gas Analysis of Transformer Oil | Furfural or Furfuraldehyde AnalysisPrinciple of Water Content Test of Insulating OilTransformer Accessories | Breather and Conservator Tank | RadiatorSilica Gel Breather of TransformerConservator Tank of TransformerRadiator of Transformer | Function of RadiatorMagnetic Oil Gauge or MOG | Magnetic Oil Level Indicator of TransformerOil Winding and Remote Temperature Indicator of TransformerTransformer Cooling System and MethodsOn Load and No Load Tap Changer of Transformer | OLTC and NLTCTertiary Winding of Transformer | Three Winding TransformerCore of Transformer and Design of Transformer CoreRestricted Earth Fault Protection of Transformer | REF ProtectionBuchholz Relay in Transformer | Buchholz Relay Operation and PrincipleWhat is Earthing Transformer or Grounding TransformerDifferential Protection of Transformer | Differential RelaysOver Fluxing in TransformerTransformer Testing | Type Test and Routine Test of TransformerTransformer Winding Resistance MeasurementVoltage and Turn Ratio Test of TransformerVector Group Test of Power TransformerOpen and Short Circuit Test on TransformerInsulation Dielectric Test of TransformerTransformer Oil and Winding Temperature Rise TestImpulse Test of TransformerMaintenance of TransformerSweep Frequency Response Analysis Test | SFRA TestInstallation of Power TransformerCommissioning of Power TransformerNew Articles Trees and Cotrees of Electric NetworkDifferentiatorIntegratorPhase Synchronizing Device or Controlled Switching DeviceDigital to Analog Converter or DACDifference Amplifier