Relationship of Line and Phase Voltages and Currents in a Star Connected System

To derive the relations between line and phase currents and voltages of a star connected system, we have first to draw a balanced star connected system.relation between line and phase voltages and currents of star connected system Suppose due to load impedance the current lags the applied voltage in each phase of the system by an angle ϕ. As we have considered that the system is perfectly balanced, the magnitude of current and voltage of each phase is the same. Let us say, the magnitude of the voltage across the red phase i.e. magnitude of the voltage between neutral point (N) and red phase terminal (R) is VR.

Similarly, the magnitude of the voltage across yellow phase is VY and the magnitude of the voltage across blue phase is VB. In the balanced star system, magnitude of phase voltage in each phase is Vph. ∴ VR = VY = VB = Vph

We know in the star connection, line current is same as phase current. The magnitude of this current is same in all three phases and say it is IL. ∴ IR = IY = IB = IL, Where, IR is line current of R phase, IY is line current of Y phase and IB is line current of B phase. Again, phase current, Iph of each phase is same as line current IL in star connected system. ∴ IR = IY = IB = IL = Iph.

Now, let us say, the voltage across R and Y terminal of the star connected circuit is VRY. The voltage across Y and B terminal of the star connected circuit is VYB. The voltage across B and R terminal of the star connected circuit is VBR. From the diagram, it is found that VRY = VR + ( − VY) Similarly, VYB = VY + ( − VB) And, VBR = VB + ( − VR) Now, as angle between VR and VY is 120°(electrical), the angle between VR and – VY is 180° – 120° = 60°(electrical). Thus, for the star-connected system line voltage = √3 × phase voltage. Line current = Phase current As, the angle between voltage and current per phase is φ, the electric power per phase is So the total power of three phase system is

Closely Related Articles Electric Power Single and Three Phase Power Active Reactive ApparentVector Algebra | Vector DiagramVector Diagram | Three Phase Vector DiagramMore Related Articles What is Capacitor and Capacitance? Types of CapacitorsWorking Principle of a CapacitorEnergy Stored in CapacitorQuality Factor of Inductor and CapacitorTransient Behavior of CapacitorCylindrical CapacitorSpherical CapacitorCapacitors in Series and ParallelTesting of Capacitor BankHow to Test Capacitors?Electric Circuit and Electrical Circuit ElementsSeries Parallel Battery CellsElectrical DC Series and Parallel CircuitRL Series CircuitRLC CircuitThree Phase Circuit | Star and Delta SystemRL Parallel CircuitRL Circuit Transfer Function Time Constant RL Circuit as FilterConstruction of AC Circuits and Working of AC CircuitsSeries RLC CircuitParallel RLC CircuitResistances in Series and Resistances in ParallelResonance in Series RLC CircuitPlanar and Non Planar Graphs of CircuitClipping CircuitElectrical Conductance Conductivity of Metal Semiconductor and Insulator | Band TheoryProperties of Electric ConductorElectrical Resistance and Laws of ResistanceSeries ResistanceEarn with usElectric Current and Theory of Electricity | Heating and Magnetic EffectNature of ElectricityDrift Velocity Drift Current and Electron MobilityElectric Current and Voltage Division RuleRMS or Root Mean Square Value of AC SignalWhat is Electric Field?Electric Field Strength or Electric Field IntensityStatic Electric Field | Electrostatic Induction What is Flux? Types of Flux?Magnetic PermeabilityMagnetic Field and Magnetic Circuit | Magnetic MaterialsMagnetic SaturationEnergy Stored in a Magnetic FieldHysteresis LoopA Current Carrying Conductor Within A Magnetic FieldMagnetic SusceptibilityHard Magnetic MaterialsSoft Magnetic MaterialsMagnetic Circuit with Air GapFourier Series and Fourier TransformTrigonometric Fourier SeriesAnalysis of Exponential Fourier SeriesElectrical and Electronics Engineering BooksWhat is Inductor and Inductance | Theory of InductorMutual InductanceSelf InductanceSI System of UnitsElectrical International SymbolTypes of resistor Carbon Composition and Wire Wound ResistorVaristor Metal Oxide Varistor is nonlinear ResistorCarbon Composition ResistorWire Wound ResistorVariable Resistors | Defination, Uses and Types of Variable ResistorsLight Dependent Resistor | LDR and Working Principle of LDRSource of Electrical EnergyVoltage SourceIdeal Dependent Independent Voltage Current SourceVoltage or Electric Potential DifferenceVoltage in SeriesVoltage in ParallelVoltage Drop CalculationVoltage DividerVoltage MultiplierVoltage DoublerVoltage RegulatorVoltage FollowerVoltage Regulator 7805Voltage to Current ConverterNew Articles Electrical and Electronics Engineering BooksWater MeterAir MeterDigital PotentiometersBasic Construction of Wind Turbine