Quality Factor of Inductor and Capacitor

Quality Factor of Inductor

Every inductor possesses a small resistance in addition to its inductance. The lower the value of this resistance R, the better the quality of the coil. The quality factor or the Q factor of an inductor at the operating frequency ω is defined as the ratio of reactance of the coil to its resistance. Thus for a inductor, quality factor is expressed as, Where L is the effective inductance of the coil in Henrys and R is the effective resistance of the coil in Ohms. Obviously, Q is a dimensionless ratio. The Q factor may also be defined as Thus, consider a sinusoidal voltage V of frequency ω radians/seconds applied to an inductor L of effective internal resistance R as shown in Figure 1(a). Let the resulting peak current through the inductor be Im.

Then the maximum energy stored in the inductor RL and RC circuits Figure 1.RL and RC circuits connected to a sinusoidal voltage sources

The average power dissipated in the inductor per cycle Hence, the energy dissipated in the inductor per cycle Hence,

Quality Factor of a Capacitor

Figure 1(b). shows a capacitor C with small series resistance R associated within. The Q-factor or the quality factor of a capacitor at the operating frequency ω is defined as the ratio of the reactance of the capacitor to its series resistance. Thus, In this case also, the Q is a dimensionless quantity. Equation (2) giving the alternative definition of Q also holds good in this case. Thus, for the circuit of Figure 1(b), on application of a sinusoidal voltage of value V volts and frequency ω, the maximum energy stored in the capacitor Where, Vm is the maximum value of voltage across the capacitance C. But if then Where Im is the maximum value of current through C and R. Hence, the maximum energy stored in capacitor C is Energy dissipated per cycle So, the quality factor of capacitor is Often a lossy capacitor is represented by a capacitance C with a high resistance Rp in shunt as shown in Figure 2. Then for the capacitor of Figure 2, the maximum energy stored in the capacitor Where Vm is the maximum value of the applied voltage. The average power dissipated in resistance Rp Figure 2. Alternative method of representing a lossy capacitor Energy dissipated per cycle Hence,

Closely Related Articles What is Capacitor and Capacitance? Types of CapacitorsWorking Principle of a CapacitorEnergy Stored in CapacitorTransient Behavior of CapacitorCylindrical CapacitorSpherical CapacitorCapacitors in Series and ParallelTesting of Capacitor BankHow to Test Capacitors?More Related Articles Electric Circuit and Electrical Circuit ElementsSeries Parallel Battery CellsElectrical DC Series and Parallel CircuitRL Series CircuitRLC CircuitThree Phase Circuit | Star and Delta SystemRL Parallel CircuitRL Circuit Transfer Function Time Constant RL Circuit as FilterConstruction of AC Circuits and Working of AC CircuitsSeries RLC CircuitParallel RLC CircuitResistances in Series and Resistances in ParallelResonance in Series RLC CircuitPlanar and Non Planar Graphs of CircuitClipping CircuitElectrical Conductance Conductivity of Metal Semiconductor and Insulator | Band TheoryProperties of Electric ConductorElectrical Resistance and Laws of ResistanceSeries ResistanceEarn with usElectric Current and Theory of Electricity | Heating and Magnetic EffectNature of ElectricityDrift Velocity Drift Current and Electron MobilityElectric Current and Voltage Division RuleRMS or Root Mean Square Value of AC SignalWhat is Electric Field?Electric Field Strength or Electric Field IntensityStatic Electric Field | Electrostatic Induction What is Flux? Types of Flux?Magnetic PermeabilityMagnetic Field and Magnetic Circuit | Magnetic MaterialsMagnetic SaturationEnergy Stored in a Magnetic FieldHysteresis LoopA Current Carrying Conductor Within A Magnetic FieldMagnetic SusceptibilityHard Magnetic MaterialsSoft Magnetic MaterialsMagnetic Circuit with Air GapFourier Series and Fourier TransformTrigonometric Fourier SeriesAnalysis of Exponential Fourier SeriesElectrical and Electronics Engineering BooksWhat is Inductor and Inductance | Theory of InductorMutual InductanceSelf InductanceSI System of UnitsElectrical International SymbolElectric Power Single and Three Phase Power Active Reactive ApparentVector Algebra | Vector DiagramRelationship of Line and Phase Voltages and Currents in a Star Connected SystemVector Diagram | Three Phase Vector DiagramTypes of resistor Carbon Composition and Wire Wound ResistorVaristor Metal Oxide Varistor is nonlinear ResistorCarbon Composition ResistorWire Wound ResistorVariable Resistors | Defination, Uses and Types of Variable ResistorsLight Dependent Resistor | LDR and Working Principle of LDRSource of Electrical EnergyVoltage SourceIdeal Dependent Independent Voltage Current SourceVoltage or Electric Potential DifferenceVoltage in SeriesVoltage in ParallelVoltage Drop CalculationVoltage DividerVoltage MultiplierVoltage DoublerVoltage RegulatorVoltage FollowerVoltage Regulator 7805Voltage to Current ConverterNew Articles Electrical and Electronics Engineering BooksWater MeterAir MeterDigital PotentiometersBasic Construction of Wind Turbine