Measurement of Reactance of a Shunt Reactor

The following two factors to be considered during measurement of reactance of a shunt reactor.
  • The reactance of a shunt reactor is approximately equal to its impedance as the resistive component of the impedance in shunt reactor is negligible.
  • The V – I characteristics of the shunt reactor is almost linear under operating range of applied voltage. This is because, gapped core is used in the shunt reactor to prevent magnetic saturation of the core within normal operational range.

The simple formula of impedance in ohm is Where, V is voltage in volt and I is current in ampere.

But in the case of shunt reactor, impedance Z = reactance X.

Hence, here Where V is applied voltage across the winding of the reactor and I is the corresponding current through it.

As the V – I characteristic of the reactor is linear, reactance of the reactor winding remains fixed for any applied voltage below the maximum rated value.

In the case of reactance measurement of three phase shunt reactor, we use sinusoidal three phase supply voltage of power frequency (50 Hz) as test voltage. We connect three supply phases to three terminals of the reactor winding as shown. Before that we should make sure that the neutral terminal of the winding is properly earthed. After switching on the supply, we measure the current flowing through each phase of the winding with the help of suitably sensitive clip on meter. After current measurements, we have to calculate the average current per phase. The average is taken as algebraic summation of three phase currents divided by 3. The measured reactance of the three phase shunt reactor is taken as measurement of reactance of shunt reactor For three phase reactors with magnetic iron path for zero sequence flux, zero sequence reactance may be measured as follows,

In that case the three terminals of the reactor are shorted and single phase supply is applied between common phase terminal and neutral terminal of the winding. After measuring the current through the common path we have to divide the applied single phase voltage by it. We then multiply 3 with the result to obtain zero sequence reactance per phase. measurement of zero sequence reactance of shunt reactor


Closely Related Articles Types of Electrical ReactorSelection of Reactor for Different ApplicationsConstruction of a Shunt ReactorTests of Shunt ReactorWinding Resistance Test of Shunt ReactorArc Suppression Coil or Petersen CoilMore Related Articles Electrical Power Cable Types of Overhead ConductorTesting of Electrical Power Cable | Type Test | Acceptance Test | Routine TestConductor Resistance Test of Electrical Power CablesTest for Thickness of Insulation of Power CableAnnealing Test for Wires and Conductors Tensile Test of ConductorsPersulphate Test of ConductorWrapping Test for ConductorsCapacitor Bank | Reactive Power CompensationTypes of Capacitor BankTesting of Capacitor BankSpecifications or Rating of Power Capacitor BankShunt Capacitor Switchable Capacitor Bank or Switched Capacitor BankLocation of Shunt CapacitorsResistance of EarthSystem EarthingEquipment Earthing Electrical Insulator | Insulating Material | Porcelain Glass Polymer InsulatorTypes of Electrical Insulator | Overhead InsulatorInsulation Coordination in Power SystemElectrical Insulator Testing | Cause of Insulator failureDielectric Properties of InsulationElectrical Power Substation Engineering and LayoutElectrical Bus System and Electrical Substation LayoutMobile Substation | Portable Substation | Mobile TransformerLoad Curve | Load Duration Curve | Daily Load CurveHigh Voltage Direct Current Transmission | HVDC TransmissionElectrical Transmission Tower Types and DesignMethods of Transmission Tower ErectionBasic Concept of Transmission Tower FoundationDesign of Foundations of Transmission Towers in different SoilsCorona Effect in Power SystemFerranti Effect in Power SystemAdvantages of Three Phase System over Single Phase SystemInductance in Single Conductor Power Transmission LineInductance in Three Phase Transmission LineWhy Supply Frequency 50 or 60 Hz not Other Values than these?Power System StabilityLoad Flow or Power Flow AnalysisTransient Stability in Power SystemFlexible AC Transmission Systems | FACTSTariff of Electricity in IndiaPower Factor | Calculation and Power Factor ImprovementSkin Effect in Transmission LinesInductance of Two Wire Single Phase Transmission LineAuto Reclosing Scheme of Transmission SystemLoad Flow and Y BusEqual Area CriterionSteady State StabilityElectrical Power Transmission System and NetworkTransmission Line in Power SystemVoltage in Power Electric LinesShort Transmission LineMedium Transmission LineLong Transmission LinePerformance of Transmission LineABCD Parameters of Transmission LineSag in Overhead ConductorSurge Impedance Loading or SILAdmittanceAdvantages of Bundled ConductorsBundled Conductors Used in Transmission LineGround Clearance of Different Transmission LinesNew Articles System EarthingArc Suppression Coil or Petersen CoilWinding Resistance Test of Shunt ReactorMeasurement of Reactance of a Shunt ReactorTests of Shunt Reactor