electrical4u.com logo Home MCQ Engineering Calculators Videos Basic Electrical Circuit Theories Electrical Laws Materials Batteries Illumination Generation Transmission Distribution Switchgear Protection Measurement Control System Utilities Safety Transformer Motor Generator Electrical Drives Electronics Devices Power Electronics Digital Electronics Biomedical Instrumentation

Ionization Energy

Published on 12/8/2018 & updated on 13/8/2018
The ability of an element to give away its outermost electrons to form positive ions is manifested in the amount of energy supplied to its atoms sufficiently enough to take away the electrons out of them. This energy is known as Ionisation Energy. Simply speaking, the Ionisation Energy is the energy supplied to an isolated atom or molecule to knockout its most loosely bound valence shell electron to form a positive ion. Its unit is electron-volt eV or kJ/mol and is measured in an electric discharge tube in which a fast-moving electron collides with a gaseous element to eject one of its electrons. The lesser Ionisation Energy (IE), the better the ability to form cations.Ionization Energy This can be explained with the Bohr model of an atom, in that it considers a hydrogen-like atom in which an electron revolves around a positively charged nucleus due to the columbic force of attraction and the electron can only have fixed or quantized energy levels. The energy of a Bohr model electron is quantized and given as below : Where, Z is the atomic number and n is the principal quantum number where n is an integer. For a hydrogen atom, Ionisation energy is 13.6eV.

The Ionisation Energy (eV) is the energy required to take the electron from n = 1 (ground state or most stable state) to infinity. Hence taking 0 (eV) reference at infinity, the Ionisation Energy can be written as :The concept of Ionisation Energy supports the evidence of Bohr model of atom that the electron can revolve around the nucleus in a fixed or discrete energy levels or shells represented by the principal quantum number ‘n’. As the first electron goes away from the vicinity of the positive nucleus, then greater energy is required to remove the next loosely bound electron as the electrostatic force of attraction increases, i.e., the second Ionisation Energy is greater than the first one.

Related pages
Ionization Energy

For example, the first ionization energy of Sodium (Na) is given as : And its second Ionisation Energy is

Hence, IE2 > IE1 (eV). This is also true if there are K number of ionisations, then IE1 < IE2 < IE3……….< IEk

Metals have low Ionisation Energy. Low Ionisation Energy implies better conductivity of the element. For example, the conductivity of Silver (Ag, atomic number Z = 47) is 6.30 × 107 s/m and its Ionisation Energy is 7.575 eV and for Copper (Cu, Z = 29) is 5.76 × 107 s/m and its Ionisation Energy is 7.726 eV. In conductors the low Ionisation Energy causes the electrons to move throughout the positively charged lattice, forming an electron cloud.

Factors Affecting Ionisation Energy

In the periodic table, the general trend is that the Ionisation Energy increases from left to right and decreases from top to bottom. So the factors affecting ionization energy can be summarised below:

Please Rate this Article
⚑ 1 total

New Articles
More Articles on Basic Electrical
MaterialElectricityQuantum TheoryBasic LawsElectromagnetismCurrent VoltageResistanceResistorInductorsCapacitorCapacitor TypesElectrostaticPhasor DiagramElectron EmissionMiscellaneousGuest Post
Articles Categories
Write for Us
Basic Electrical
Electric Transformer
Electric Generator
Electric Motor
Electrical MCQ
Engineering Calculators
Video Lectures
Electrical Generation
Electric Transmission
Electric Protection
Electrical Measurement
Electronics Devices
Power Electronics
Digital Electronics