Ideal Transformer

Definition of Ideal Transformer

An ideal transformer is an imaginary transformer which does not have any loss in it, means no core losses, copper losses and any other losses in transformer. Efficiency of this transformer is considered as 100%.

Ideal Transformer Model

Ideal transformer model is developed by considering a transformer which does not have any loss. That means the windings of the transformer are purely inductive and the core of transformer is loss free. There is zero leakage reactance of transformer. As we said, whenever we place a low reluctance core inside the windings, maximum amount of flux passes through this core, but still there is some flux which does not pass through the core but passes through the insulation used in the transformer.

This flux does not take part in the transformation action of the transformer. This flux is called leakage flux of transformer. In an ideal transformer, this leakage flux is also considered nil. That means, 100% flux passes through the core and links with both the primary and secondary windings of transformer. Although every winding is desired to be purely inductive but it has some resistance in it which causes voltage drop and I2R loss in it. In such ideal transformer model, the windings are also considered ideal, that means resistance of the winding is zero.
Now if an alternating source voltage V1 is applied in the primary winding of that ideal transformer, there will be a counter self emf E1 induced in the primary winding which is purely 180o in phase opposition with supply voltage V1. primary induced voltage magnetizing current For developing counter emf E1 across the primary winding, it draws current from the source to produce required magnetizing flux. As the primary winding is purely inductive, that current 90o lags from the supply voltage. This current is called magnetizing current of transformer Iμ. secondary induced voltage ideal transformer This alternating current Iμ produces an alternating magnetizing flux Φ which is proportional to that current and hence in phase with it. As this flux is also linked with secondary winding through the core of transformer, there will be another emf E2 induced in the secondary winding, this is mutually induced emf. As the secondary is placed on the same core where the primary winding is placed, the emf induced in the secondary winding of transformer, E2 is in the phase with primary emf E1 and in phase opposition with source voltage V1.
The above chapter was about a brief discussion about ideal transformer, it has also explained the basic ideal transformer model.

Closely Related Articles What is transformer? Definition and Working Principle of TransformerEMF Equation of Transformer | Turns Voltage Transformation Ratio of TransformerTheory of Transformer on Load and No Load OperationResistance and Leakage Reactance or Impedance of TransformerEquivalent Circuit of Transformer referred to Primary and SecondaryHysteresis Eddy Current Iron or Core Losses and Copper Loss in TransformerVoltage Regulation of TransformerSingle Three Phase Transformer vs Bank of Three Single Phase TransformersParallel operation of TransformersMagnetizing Inrush Current in Power TransformerMore Related Articles Instrument TransformersCurrent Transformer CT class Ratio Error Phase Angle Error in Current TransformerVoltage Transformer or Potential Transformer TheoryKnee Point Voltage of Current Transformer PS ClassAccuracy Limit Factor and Instrument Security Factor of Current TransformerIsolation TransformerTransformer Insulating Oil and Types of Transformer OilDGA or Dissolved Gas Analysis of Transformer Oil | Furfural or Furfuraldehyde AnalysisTransformer Accessories | Breather and Conservator Tank | RadiatorSilica Gel Breather of TransformerConservator Tank of TransformerRadiator of Transformer | Function of RadiatorMagnetic Oil Gauge or MOG | Magnetic Oil Level Indicator of TransformerOil Winding and Remote Temperature Indicator of TransformerTransformer Cooling System and MethodsOn Load and No Load Tap Changer of Transformer | OLTC and NLTCTertiary Winding of Transformer | Three Winding TransformerCore of Transformer and Design of Transformer CoreRestricted Earth Fault Protection of Transformer | REF ProtectionBuchholz Relay in Transformer | Buchholz Relay Operation and PrincipleWhat is Earthing Transformer or Grounding TransformerDifferential Protection of Transformer | Differential RelaysOver Fluxing in TransformerTransformer Testing | Type Test and Routine Test of TransformerTransformer Winding Resistance MeasurementVoltage and Turn Ratio Test of TransformerVector Group Test of Power TransformerOpen and Short Circuit Test on TransformerInsulation Dielectric Test of TransformerTransformer Oil and Winding Temperature Rise TestImpulse Test of TransformerMaintenance of TransformerSweep Frequency Response Analysis Test | SFRA TestInstallation of Power TransformerCommissioning of Power TransformerElectrical Power Transformer | Definition and Types of TransformerStep Up TransformerStep Down TransformerWhat is Auto Transformer ?High Voltage TransformerDistribution Transformer | All Day Efficiency of Distribution TransformerDry Type TransformerAir Core TransformerDesign of Inductor in Switched Mode Power Supply SystemsDesign of High Frequency Pulse TransformerSingle Phase TransformerToroidal TransformerNew Articles Ring CounterDischarging a CapacitorCharging a CapacitorElectric PotentialParity Generator