How to Use a Digital Multimeter?

Digital Multimeter is a device which has two words in its name: Digital and Multimeter. Let’s first try to analyze why do we have them there i.e. what do each of them actually convey which in turn helps us understand what does a multimeter do. The first word – digital – indicates that the meter has a digital or liquid crystal display while the next word – multimeter - indicates that this single device can be used for multipurpose i.e. to measure more than one parameter. A typical digital multimeter will be as shown by Figure 1 and comprises of selection switch, display, ports and probes as its major parts.

Here the probes are to be inserted into appropriate ports and are to be connected across the parameter which needs to be inspected. Meanwhile one should ensure that the selection switch is to be kept at the position which is appropriate for the measurement. When done so, the multimeter displays the value of the parameter which is being analyzed.use a digital multimeter Generally digital multimeters are used to measure three important parameters viz., current, voltage and resistance. Apart from these, they can also be used to perform special functions like diode check, capacitance measurement, Transistor hFE or DC current gain, frequency measurement and continuity check. In this article, we present a brief note on the most frequently used applications of multimeter which are for current, voltage and resistance measurement along with diode and continuity checks.

Current Measurement by Using a Digital Multimeter

Under this category, the digital multimeter mimics the behavior of an ammeter as it is used to measure current. To accomplish this, insert the red probe of the multimeter to one of the current measuring sockets: mA (to measure low level of current) or 20 A (to measure larger current). Connect the meter along the line through which the current is to be measured (nothing but series connection). Next set an approximate range around which we expect the current to be in the ammeter section of Figure 1. In this state, if we switch on the power supply, then the meter will read the current flowing through the circuit.

Voltage Measurement by Using a Digital Multimeter

When set to measure the voltage, the multimeter acts like a voltmeter. To start with, one has to insert the red and the black probes of the multimeter to the sockets marked as ‘V’ and ‘COM’, respectively. Then we have to select the expected range in which our voltage would be. Simultaneously, even AC or DC should also be selected in the voltmeter section of Figure 1. On doing so, the meter reads the value of the voltage, provided one connects the leads across the component (in parallel fashion) or at the point at which the voltage needs to be measured. voltage measurement by using a digital multimeter

Resistance Measurement by Using a Digital Multimeter

In this case, we configure the multimeter to act like an ohmmeter. Here the red and the black probes of the multimeter are inserted into the sockets marked as ‘V’ and ‘COM’, respectively while the selection switch is set to an expected range in ohmmeter region (Figure 1). Now, the leads need to be connected across the component whose resistance is to be known. On doing so, we get a reading in the display part of the multimeter which reads the value of the resistance. resistance measurement by using a digital multimeter

Diode Check by Using a Digital Multimeter

For this case, insert the probes into the sockets as that in the case of voltage measurement and set the selection switch to point towards diode check position shown in Figure 1. Now when the red lead of the multimeter is connected to positive terminal of the diode while its negative lead is connected to the negative terminal of the diode, then we have to get a low reading on the multimeter. On the other hand, if we connect the red lead to the negative terminal of the diode and the black to the positive terminal, then we have to get a high value. If the readings obtained are as per our expectation, then we say that the diode is working properly; else no. More information regarding this can be found in the article “Diode testing”. diode check by using a digital multimeter

Continuity Check by Using a Digital Multimeter

Continuity check is used to know whether there exists any low resistance path via two points i.e. to check whether the points are short or not. To accomplish this task, the probes are inserted into the sockets as that in the case of voltage measurement and selector switch is made to point towards continuity check position (Figure 1). Then, the points to be tested are touched with the leads of the probes. Now, if the multimeter beeps out, then it means that the points are shorted or else the resistance between them can be read out from the display.

Closely Related Articles Digital Frequency MeterOhmmeter Working Principle of OhmmeterInduction Type MetersWhat is Low Power Factor Wattmeter ?Electrodynamometer Type WattmeterProtection of MetersBimetallic Strip ThermometerVarmeter | Single Phase and Polyphase VarmeterWeston Type Frequency MeterAmmeter Working Principle and Types of AmmeterDigital MultimeterElectronic DC VoltmeterWorking Principle of Voltmeter and Types of VoltmeterDigital Voltmeters Working Principle of Digital VoltmeterConstruction of AC Energy MeterWatt Hour MeterCapacitance MeterVector Impedance MeterFlow MeasurementFlow MeterAir MeterWater MeterMore Related Articles Wheatstone Bridge Circuit Theory and PrincipleKelvin Bridge Circuit | Kelvin Double BridgeSensor | Types of SensorMaxwell Bridge Inductance Capacitance BridgeTemperature Sensor Temperature Measurement | Types of Temperature SensorAnderson′s Bridge | Advantages Disadvantages of Anderson′s BridgeHay′s Bridge Circuit Theory Phasor Diagram Advantages ApplicationsOwens Bridge Circuit and AdvantagesSchering Bridge Measurement of Capacitance using Schering BridgeDe Sauty BridgeHeaviside Bridge CircuitBlavier Test | Murray Loop Test | Varley Loop Test | Fisher Loop TestCathode Ray Oscilloscope | CROLissajous Patterns of CRO or Cathode Ray OscilloscopeMeasurement of Voltage Current and Frequency by OscilloscopeDigital Storage OscilloscopeDouble Beam OscilloscopeSampling OscilloscopeMeasurement of ResistanceFrequency Limitation of an OscilloscopeSignal GeneratorHartley OscillatorColpitts OscillatorClapp OscillatorRC Phase Shift OscillatorWien Bridge OscillatorGunn OscillatorCrystal OscillatorWhat is an Oscillator?Voltage Controlled Oscillator | VCOPotentiometer Working Principle of PotentiometerAC PotentiometerDigital PotentiometersElectrical Measuring Instruments | Types Accuracy Precision Resolution SpeedTransducer | Types of TransducerErrors in Measurement | Classification of ErrorsPermanent Magnet Moving Coil Instrument or PMMC InstrumentCharacteristics of SensorsMoving Iron InstrumentElectrostatic Type Instruments Construction Principle Torque EquationResistance Temperature Detector or RTD | Construction and Working PrincipleEnergy Meter with Lag Adjustment DevicesRectifier Type Instrument | Construction Principle of OperationThermistor Thermometer | Thermistor Temperature Sensor | Construction and Principle Thermocouple Type Instruments Construction Principle of OperationThermistor Definition Properties Construction Characteristics and Applications Measurement of Three Phase PowerThermocouple Temperature MeasurementTemperature TransducersMegger | Working Principle Types History Uses of MeggerRadiation Pyrometer | Types Working PrincipleOptical Pyrometer | Construction and Working PrinciplePiezoelectric TransducerStrain GaugePower Factor Meters | Electrodynamometer Type Power Factor MeterInductive TransducersPhase Sequence IndicatorLinear Variable Differential Transformer LVDTOscillator TransducerPolarization Index Test or PI TestVoltage SensorTan Delta Test |Loss Angle Test | Dissipation Factor TestMeasurement of Electrical EnergyEnergy Meter TestingMonostable MultivibratorBistable MultivibratorAstable MultivibratorNew Articles Series and Parallel Inductors Electric PowerMeasurement of Losses in Shunt ReactorThree Phase Shunt ReactorMeasurement of Insulation ResistanceAmpere's Circuital Law
electrical engineering app