# Gray Code | Binary to Gray Code and that to Binary Conversion

Code is a symbolic representation of discrete information. Codes are of different types. **Gray Code** is one of the most important codes. It is a non-weighted code which belongs to a class of codes called minimum change codes. In this codes while traversing from one step to another step only one bit in the code group changes. In case of Gray Code two adjacent code numbers differs from each other by only one bit. The idea of it can be cleared from the table given below.

As this code it is not applicable in any types of arithmetical operations but it has some applications in analog to digital converters and in some input/output devices. Now let us concentrate on the table of **Gray Code** given below where we can find the difference of binary code from gray code while traversing through the table for their respective decimal numbers.

From this table we can obtain the equivalent gray code of the decimal numbers. There are several steps which will make you understand how the codes are formed.

__You may also be interested on__

- In case of gray code one bit will change from its previous in each steps. One thing must be kept in mind that the change of bit always occurs from the right side i.e from L.S.B towards the M.S.B. At first the first three bits are constant I,e 000 and the fourth bit changes from 0 to 1. We know that for binary digit possible combination is 0 and 1, so keeping first three bit constant the possible combination of 4th bit is over for decimal 0 and 1 respectively.
- Now move to the next bit from L.S.B i.e 3rd bit, that changes from 0 to 1 which is the decimal equivalent for 2. Now one more combination is left for the fourth bit keeping the first three constant i.e 001. We can change 4th bit from 1 to 0. Thus the gray code for decimal number 3 is 0010.
- Traverse to the next code. Here we can do only one thing i.e we can change the second bit as all possible combinations are over. Question may strike in your mind that why can’t we change the third bit again which will also be a one bit change from its previous. But changing third bit would give the equivalent gray code 0000 which has occurred earlier. So you must remember that a number occurring previously must not be repeated. So the equivalent code for 4 will be 0110. Here only the second bit has changed from the previous code. Now again we will keep first and second bit constant and find the possible combinations of the third and the fourth bit by only changing 1 bit in each steps.

## Binary to Gray Code Conversion

**Binary to gray code conversion**is a very simple process. There are several steps to do this types of conversions. Steps given below elaborate on the idea on this type of conversion.

- The M.S.B. of the gray code will be exactly equal to the first bit of the given binary number.
- Now the second bit of the code will be exclusive-or of the first and second bit of the given binary number, i.e if both the bits are same the result will be 0 and if they are different the result will be 1.
- The third bit of gray code will be equal to the exclusive-or of the second and third bit of the given binary number. Thus the
**Binary to gray code conversion**goes on. One example given below can make your idea clear on this type of conversion.

## Gray Code to Binary Conversion

**Gray code to binary conversion**is again very simple and easy process. Following steps can make your idea clear on this type of conversions.

- The M.S.B of the binary number will be equal to the M.S.B of the given gray code.
- Now if the second gray bit is 0 the second binary bit will be same as the previous or the first bit. If the gray bit is 1 the second binary bit will alter. If it was 1 it will be 0 and if it was 0 it will be 1.
- This step is continued for all the bits to do
**Gray code to binary conversion**.