Alphanumeric codes | ASCII code | EBCDIC code | UNICODE

Alphanumeric codes are sometimes called character codes due to their certain properties. Now these codes are basically binary codes. We can write alphanumeric data, including data, letters of the alphabet, numbers, mathematical symbols and punctuation marks by this code which can be easily understandable and can be processed by the computers. Input output devices such as keyboards, monitors, mouse can be interfaced using these codes. 12-bit Hollerith code is the better known and perhaps the first effective code in the days of evolving computers in early days. During this period punch cards were used as the inputting and outputting data. But nowadays these codes are termed obsolete as many other modern codes have evolved. The most common alphanumeric codes used these days are ASCII code, EBCDIC code and Unicode. Now we will discuss about them briefly.

ASCII code

The full form of ASCII code is American Standard Code for Information Interchange. It is a seven bit code based on the English alphabet.

In 1967 this code was first published and since then it is being modified and updated. ASCII code has 128 characters some of which are enlisted below to get familiar with the code.

DECOCTHEXBINSymbolHTML Number Description
00000000000000NULNull char
10010100000001SOHStart of Heading
20020200000010STXStart of Text
30030300000011ETXEnd of Text
40040400000100EOTEnd of Transmission
7007 0700000111BELBell
80100800001000BSBack Space
90110900001001HTHorizontal Tab
100120A 00001010LFLine Feed
110130B 00001011VTVertical Tab
120140C 00001100FF Form Feed
130150D 00001101CRCarriage Return
140160E 00001110SOShift Out / X-On
150170F00001111SIShift In / X-O
There are many more codes which are not included here.


The EBCDIC stands for Extended Binary Coded Decimal Interchange Code. IBM invented this code to extend the Binary Coded Decimal which existed at that time. All the IBM computers and peripherals use this code. It is an 8 bit code and therefore can accommodate 256 characters. Below is given some characters of EBCDIC code to get familiar with it.
A1100 0001C1P1101 0111D741111 0100F4
B1100 0010C2Q1101 1000D851111 0101F5
C1100 0011C3 R1101 1001D961111 0110F6
D1100 0100C4 S1110 0010E271111 0111F7
E1100 0101C5T1110 0011E381111 1000F8
F1100 0110C6 U1110 0100E491111 1001F9
G1100 0111C7 V1110 0101E5blank......
H1100 1000C8 W1110 0110E6.... ...
I1100 1001C9 X1110 0111E7(......
J1101 0001D1Y1110 1000E8+......
K1101 0010D2Z1110 1001E9$......
L1101 0011D3 01111 0000F0*......
M1101 0100D411111 0001F1)......
N1101 0101D521111 0010F2-......
O1101 0110D631111 0011F3/


Unicode is the newest concept in digital coding. In Unicode every number has a unique character. Leading technological giants have adopted this code for its uniqueness. A part of the Unicode table is given below.
0 1 2 3 4 5 6 7 8 9 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
0000 ­ Symbols
0020 ! " # $ % & ' ( ) * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? Number
0040 @ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^ _ Alphabet
0060 ` a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~ 
0080  ƒ ˆ Š Œ  Ž   ˜ š œ  ž Ÿ
00A0 ¡ ¢ £ ¤ ¥ ¦ § ¨ © ª « ¬ ® ¯ ° ± ² ³ ´ µ · ¸ ¹ º » ¼ ½ ¾ ¿
00C0 À Á Â Ã Ä Å Æ Ç È É Ê Ë Ì Í Î Ï Ð Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û Ü Ý Þ ß Latin
000E à á â ã ä å æ ç è é ê ë ì í î ï ð ñ ò ó ô õ ö ÷ ø ù ú û ü ý þ ÿ
0100 Ā ā Ă ă Ą ą Ć ć Ĉ ĉ Ċ ċ Č č Ď ď Đ đ Ē ē Ĕ ĕ Ė ė Ę ę Ě ě Ĝ ĝ Ğ ğ
0120 Ġ ġ Ģ ģ Ĥ ĥ Ħ ħ Ĩ ĩ Ī ī Ĭ ĭ Į į İ ı IJ ij Ĵ ĵ Ķ ķ ĸ Ĺ ĺ Ļ ļ Ľ ľ Ŀ
0140 ŀ Ł ł Ń ń Ņ ņ Ň ň ʼn Ŋ ŋ Ō ō Ŏ ŏ Ő ő Œ œ Ŕ ŕ Ŗ ŗ Ř ř Ś ś Ŝ ŝ Ş ş
0160 Š š Ţ ţ Ť ť Ŧ ŧ Ũ ũ Ū ū Ŭ ŭ Ů ů Ű ű Ų ų Ŵ ŵ Ŷ ŷ Ÿ Ź ź Ż ż Ž ž ſ
0180 ƀ Ɓ Ƃ ƃ Ƅ ƅ Ɔ Ƈ ƈ Ɖ Ɗ Ƌ ƌ ƍ Ǝ Ə Ɛ Ƒ ƒ Ɠ Ɣ ƕ Ɩ Ɨ Ƙ ƙ ƚ ƛ Ɯ Ɲ ƞ Ɵ
01A0 Ơ ơ Ƣ ƣ Ƥ ƥ Ʀ Ƨ ƨ Ʃ ƪ ƫ Ƭ ƭ Ʈ Ư ư Ʊ Ʋ Ƴ ƴ Ƶ ƶ Ʒ Ƹ ƹ ƺ ƻ Ƽ ƽ ƾ ƿ
01C0 ǀ ǁ ǂ ǃ DŽ Dž dž LJ Lj lj NJ Nj nj Ǎ ǎ Ǐ ǐ Ǒ ǒ Ǔ ǔ Ǖ ǖ Ǘ ǘ Ǚ ǚ Ǜ ǜ ǝ Ǟ ǟ
100E Ǡ ǡ Ǣ ǣ Ǥ ǥ Ǧ ǧ Ǩ ǩ Ǫ ǫ Ǭ ǭ Ǯ ǯ ǰ DZ Dz dz Ǵ ǵ Ƕ Ƿ Ǹ ǹ Ǻ ǻ Ǽ ǽ Ǿ ǿ
200 Ȁ ȁ Ȃ ȃ Ȅ ȅ Ȇ ȇ Ȉ ȉ Ȋ ȋ Ȍ ȍ Ȏ ȏ Ȑ ȑ Ȓ ȓ Ȕ ȕ Ȗ ȗ Ș ș Ț ț Ȝ ȝ Ȟ ȟ
0220 Ƞ ȡ Ȣ ȣ Ȥ ȥ Ȧ ȧ Ȩ ȩ Ȫ ȫ Ȭ ȭ Ȯ ȯ Ȱ ȱ Ȳ ȳ ȴ ȵ ȶ ȷ ȸ ȹ Ⱥ Ȼ ȼ Ƚ Ⱦ ȿ
0240 ɀ Ɂ ɂ Ƀ Ʉ Ʌ Ɇ ɇ Ɉ ɉ Ɋ ɋ Ɍ ɍ Ɏ ɏ ɐ ɑ ɒ ɓ ɔ ɕ ɖ ɗ ɘ ə ɚ ɛ ɜ ɝ ɞ ɟ
0260 ɠ ɡ ɢ ɣ ɤ ɥ ɦ ɧ ɨ ɩ ɪ ɫ ɬ ɭ ɮ ɯ ɰ ɱ ɲ ɳ ɴ ɵ ɶ ɷ ɸ ɹ ɺ ɻ ɼ ɽ ɾ ɿ
0280 ʀ ʁ ʂ ʃ ʄ ʅ ʆ ʇ ʈ ʉ ʊ ʋ ʌ ʍ ʎ ʏ ʐ ʑ ʒ ʓ ʔ ʕ ʖ ʗ ʘ ʙ ʚ ʛ ʜ ʝ ʞ ʟ
02A0 ʠ ʡ ʢ ʣ ʤ ʥ ʦ ʧ ʨ ʩ ʪ ʫ ʬ ʭ ʮ ʯ ʰ ʱ ʲ ʳ ʴ ʵ ʶ ʷ ʸ ʹ ʺ ʻ ʼ ʽ ʾ ʿ
02C0 ˀ ˁ ˂ ˃ ˄ ˅ ˆ ˇ ˈ ˉ ˊ ˋ ˌ ˍ ˎ ˏ ː ˑ ˒ ˓ ˔ ˕ ˖ ˗ ˘ ˙ ˚ ˛ ˜ ˝ ˞ ˟
200E ˠ ˡ ˢ ˣ ˤ ˥ ˦ ˧ ˨ ˩ ˪ ˫ ˬ ˭ ˮ ˯ ˰ ˱ ˲ ˳ ˴ ˵ ˶ ˷ ˸ ˹ ˺ ˻ ˼ ˽ ˾ ˿
0300 ̀ ́ ̂ ̃ ̄ ̅ ̆ ̇ ̈ ̉ ̊ ̋ ̌ ̍ ̎ ̏ ̐ ̑ ̒ ̓ ̔ ̕ ̖ ̗ ̘ ̙ ̚ ̛ ̜ ̝ ̞ ̟
0320 ̠ ̡ ̢ ̣ ̤ ̥ ̦ ̧ ̨ ̩ ̪ ̫ ̬ ̭ ̮ ̯ ̰ ̱ ̲ ̳ ̴ ̵ ̶ ̷ ̸ ̹ ̺ ̻ ̼ ̽ ̾ ̿
0340 ̀ ́ ͂ ̓ ̈́ ͅ ͆ ͇ ͈ ͉ ͊ ͋ ͌ ͍ ͎ ͏ ͐ ͑ ͒ ͓ ͔ ͕ ͖ ͗ ͘ ͙ ͚ ͛ ͜ ͝ ͞ ͟
0360 ͠ ͡ ͢ ͣ ͤ ͥ ͦ ͧ ͨ ͩ ͪ ͫ ͬ ͭ ͮ ͯ Ͱ ͱ Ͳ ͳ ʹ ͵ Ͷ ͷ ͸ ͹ ͺ ͻ ͼ ͽ ; Ϳ
0380 ΀ ΁ ΂ ΃ ΄ ΅ Ά · Έ Ή Ί ΋ Ό ΍ Ύ Ώ ΐ Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Greek
03A0 Π Ρ ΢ Σ Τ Υ Φ Χ Ψ Ω Ϊ Ϋ ά έ ή ί ΰ α β γ δ ε ζ η θ ι κ λ μ ν ξ ο
03C0 π ρ ς σ τ υ φ χ ψ ω ϊ ϋ ό ύ ώ Ϗ ϐ ϑ ϒ ϓ ϔ ϕ ϖ ϗ Ϙ ϙ Ϛ ϛ Ϝ ϝ Ϟ ϟ
300E Ϡ ϡ Ϣ ϣ Ϥ ϥ Ϧ ϧ Ϩ ϩ Ϫ ϫ Ϭ ϭ Ϯ ϯ ϰ ϱ ϲ ϳ ϴ ϵ ϶ Ϸ ϸ Ϲ Ϻ ϻ ϼ Ͻ Ͼ Ͽ

Closely Related Articles Binary Number System | Binary to Decimal and Decimal to Binary ConversionBinary to Decimal and Decimal to Binary ConversionBCD or Binary Coded Decimal | BCD Conversion Addition SubtractionBinary to Octal and Octal to Binary ConversionOctal to Decimal and Decimal to Octal ConversionBinary to Hexadecimal and Hex to Binary ConversionHexadecimal to Decimal and Decimal to Hexadecimal ConversionGray Code | Binary to Gray Code and that to Binary ConversionOctal Number SystemDigital Logic Gates2′s Complement1′s ComplementASCII CodeHamming Code2s Complement ArithmeticError Detection and Correction Codes9s complement and 10s complement | SubtractionSome Common Applications of Logic GatesKeyboard EncoderMore Related Articles Digital ElectronicsBoolean Algebra Theorems and Laws of Boolean AlgebraDe Morgan Theorem and Demorgans LawsTruth Tables for Digital LogicBinary Arithmetic Binary AdditionBinary SubtractionSimplifying Boolean Expression using K MapBinary DivisionExcess 3 Code Addition and SubtractionK Map or Karnaugh MapSwitching Algebra or Boolean AlgebraBinary MultiplicationParallel SubtractorBinary Adder Half and Full AdderBinary SubstractorSeven Segment DisplayBinary to Gray Code Converter and Grey to Binary Code ConverterBinary to BCD Code ConverterAnalog to Digital ConverterDigital Encoder or Binary EncoderBinary DecoderBasic Digital CounterDigital ComparatorBCD to Seven Segment DecoderParallel AdderParallel Adder or SubtractorMultiplexerDemultiplexer555 Timer and 555 Timer WorkingOR Operation | Logical OR OperationAND Operation | Logical AND OperationLogical OR GateLogical AND GateNOT GateUniversal Gate | NAND and NOR Gate as Universal GateNAND GateDiode and Transistor NAND Gate or DTL NAND Gate and NAND Gate ICsX OR Gate and X NOR GateTransistor Transistor Logic or TTLNOR GateFan out of Logic GatesINHIBIT GateNMOS Logic and PMOS LogicSchmitt GatesLogic Families Significance and Types of Logic FamiliesLatches and Flip FlopsS R Flip Flop S R LatchActive Low S R Latch and Flip FlopGated S R Latches or Clocked S R Flip FlopsD Flip Flop or D LatchJ K Flip FlopMaster Slave Flip FlopRead Only Memory | ROMProgrammable Logic DevicesProgrammable Array LogicApplication of Flip FlopsShift RegistersBuffer Register and Controlled Buffer RegisterData Transfer in Shift RegistersSerial In Serial Out (SISO) Shift RegisterSerial in Parallel Out (SIPO) Shift RegisterParallel in Serial Out (PISO) Shift RegisterParallel in Parallel Out (PIPO) Shift RegisterUniversal Shift RegistersBidirectional Shift RegisterDynamic Shift RegisterApplications of Shift RegistersUninterruptible Power Supply | UPSConversion of Flip FlopsNew Articles Water MeterAir MeterDigital PotentiometersBasic Construction of Wind TurbineCharacteristics of Sensors