× Home MCQ Videos Basic Electrical Circuit Theories Electrical Laws Materials Batteries Illumination Generation Transmission Distribution Switchgear Protection Measurement Control System Utilities Safety Transformer Motor Generator Electrical Drives Electronics Devices Power Electronics Digital Electronics

Silicon Controlled Rectifier SCR | Two Transistor Model | Operating Principle

What is Thyristor or SCR?

It is a silicon based semiconductor device, which is used in electrical circuits for switching operation. SCR, whose full form is silicon controlled rectifier, is also a well known member of thyristor family. Although there are many different members are available in thyristor family, but silicon controlled rectifiers are so widely used that as if thyristor and SCR become synonymous.
The characteristic of thyristor consists of the characteristic of thyratron tube and characteristic of transistor. In other words, it can be said, that the characteristic of thyristor is combination of characteristics of thyratron tube and transistor. That is why the name of thyristor consists of first four letters of thyratron tube and last five letters of transistor. [THYRItron + transISTOR]. The device has ideal states, i.e. On and OFF. Generally an SCR consists of two PN junctions, but sometimes it may also consist of more than two PN junctions.

If we see from the constructional and operational point of view, it is a four layer (PNPN) three terminals (Anode, Cathode, Gate) semi controlled device. This device has tow states i.e. on and OFF. We can turn it ON by sending a gate current signal between second P layer and cathode. But we cannot turn it OFF by control signal. That means we have control upon its turn ON, once it goes to conduction mode, we lose control over it. It can block both forward and reverse voltage but can conduct only in one direction. In very high power application, like AC-DC converter, AC-AC converters, engineer’s first choice is always thyristor or silicon controlled rectifier due to its very low conduction loss.

You may also be interested on
Silicon Controlled Rectifier SCR | Two Transistor Model | Operating Principle

Two Transistor Model of SCR

Basic operating principle of SCR, can be easily understood by the two transistor model of SCR or analogy of silicon controlled rectifier, as it is also a combination of P and N layers, shown in figure below. schematic diagram of thyristor

This is a pnpn thyristor. If we bisect it through the dotted line then we will get two transistors i.e. one pnp transistor with J1 and J2 junctions and another is with J2 and J3 junctions as shown in figure below. schematic diagram of two transistor model

When the transistors are in off state, the relation between the collector current and emitter current is shown below two transistor model Here, IC is collector current, IE is emitter current, ICBO is forward leakage current, α is common base forward current gain and relationship between IC and IB is Where, IB is base current and β is common emitter forward current gain. Let’s for transistor T1 this relation holds And that for transistor T2 Now, by the analysis of two transistors model we can get anode current, From equation (i) and (ii), we get, If applied gate current is Ig then cathode current will be the summation of anode current and gate current i.e. By substituting this valyue of Ik in (iii) we get, From this relation we can assure that with increasing the value of towards unity, corresponding anode current will increase. Now the question is how increasing? Here is the explanation using two transistor model of SCR. At the first stage when we apply a gate current Ig, it acts as base current of T2 transistor i.e. IB2 = Ig and emitter current i.e. Ik = Ig of the T,2 transistor. Hence establishment of the emitter current gives rise α2 as Presence of base current will generate collector current as This IC2 is nothing but base current IB1 of transistor T,1, which will cause the flow of collector current, IC1 and IB1 lead to increase IC1 as and hence, α1 increases. Now, new base current of T2 is , which will lead to increase emitter current and as a result α2 also increases and this further increases . As , α1 again increases. This continuous positive feedback effect increases towards unity and anode current tends to flow at a very large value. The value current then can only be controlled by external resistance of the circuit.

NNIKHIL commented on 20/06/2018
In dotted line diagram, after J3 junction, n layer is there instead of p layer.

New Articles
Biological AmplifiersApplications of Resistive Transducers in Biomedical InstrumentationChopper AmplifierApplication of Transducers in Biomedical InstrumentationOptoisolator
Related Articles
Power ElectronicsApplication of Power ElectronicsSilicon Controlled RectifierTwo Transistor ModelThyristorCharacteristics of ThyristorON OFF Characteristics of SCRGate Characteristics of SCRThyristor TriggeringRating of SCRConnection of SCRThyristor ProtectionIGBT
More Related Articles