ONLINE ELECTRICAL ENGINEERING STUDY SITE

Static Electric Field | Electrostatic Induction

Static Electric Field

We know there are two types of charge present in the nature (i) positive and (ii) negative charge. In positive charge, there is mainly deficiency of electrons and in negative charge there are excess of electrons. Now, we can simply understand the concepts of charge from a very basic example. Take a dry comb, comb your hair (which should be dry) two to three times, now take that comb near tiny pieces of paper, you will see that the paper pieces are getting attracted to the comb. This is the very basic example of electric charge and static electric field. Due to friction there is movement of electrons between comb and hair, so one of them gets positively charged and another one gets negatively charged and as the paper is neutral (i.e. not charged) they get attracted to the comb.

So, we can see that there is an attraction force works between charged particle and neutral particle, it has been seen further that there is repulsion between two same charged particles and attraction between two oppositely charged particles. This happens due to the field created around a particle. This can be understood if we imagine a glowing bulb, the bulb can be taken as the charge and the visible light can be compared to static electric field, the characteristic of field is similar to the light in the sense that the intensity of the field is greater near the source and it fades as we move further from the source. Now from another point of view we can say that static electric field is nothing but an intense space, in terms of power where work is done or needed to be done upon in presence of an electrically charged particle depending on the nature of the charged particle.

Electrostatic Induction

A positive charge lacks electrons, where as a negative charge has excess electrons. What about the phenomenon of attraction of a neutral particle by a charged particle, because we can understand the phenomenon of attraction and repulsion between oppositely charged particles and same charged particles respectively, but how neutrally charged particles get attracted by charged particles. This can be explained by electrostatic induction. The word induction itself explains a lot, it means action which is not the result of direct contact. To explain the above explained phenomenon, we can say that when a neutral body is brought near the charged body, due to influence of static electric field, free electrons inside the neutral body either come nearer to the charged body or go away from charged body depending upon the nature of charge in the charged body. If the charged body is positive, free electrons of the neutral body come nearer to the charged body and if the charged body is negative, the free electrons go away from the charged body. Thus, opposite charge is induced in the neutrally charged body near to the charged body and same charge on the opposite side. In this way, the portion of the neutral body nearer to the charged body is induced by opposite static charge and hence it would be attracted by charged body. We can understand the phenomenon more accurately by a diagram. electrostatic induction

Closely Related Articles What is Electric Field?Electric Field Strength or Electric Field IntensityWhat is Flux? Types of Flux?Magnetic PermeabilityMagnetic Field and Magnetic Circuit | Magnetic MaterialsMagnetic SaturationEnergy Stored in a Magnetic FieldHysteresis LoopA Current Carrying Conductor Within A Magnetic FieldMagnetic SusceptibilityHard Magnetic MaterialsSoft Magnetic MaterialsMagnetic Circuit with Air GapMore Related Articles What is Capacitor and Capacitance? Types of CapacitorsWorking Principle of a CapacitorEnergy Stored in CapacitorQuality Factor of Inductor and CapacitorTransient Behavior of CapacitorCylindrical CapacitorSpherical CapacitorCapacitors in Series and ParallelTesting of Capacitor BankHow to Test Capacitors?Electric Circuit and Electrical Circuit ElementsSeries Parallel Battery CellsElectrical DC Series and Parallel CircuitRL Series CircuitRLC CircuitThree Phase Circuit | Star and Delta SystemRL Parallel CircuitRL Circuit Transfer Function Time Constant RL Circuit as FilterConstruction of AC Circuits and Working of AC CircuitsSeries RLC CircuitParallel RLC CircuitResistances in Series and Resistances in ParallelResonance in Series RLC CircuitPlanar and Non Planar Graphs of CircuitClipping CircuitElectrical Conductance Conductivity of Metal Semiconductor and Insulator | Band TheoryProperties of Electric ConductorElectrical Resistance and Laws of ResistanceSeries ResistanceEarn with usElectric Current and Theory of Electricity | Heating and Magnetic EffectNature of ElectricityDrift Velocity Drift Current and Electron MobilityElectric Current and Voltage Division RuleRMS or Root Mean Square Value of AC SignalFourier Series and Fourier TransformTrigonometric Fourier SeriesAnalysis of Exponential Fourier SeriesElectrical and Electronics Engineering BooksWhat is Inductor and Inductance | Theory of InductorMutual InductanceSelf InductanceSI System of UnitsElectrical International SymbolElectric Power Single and Three Phase Power Active Reactive ApparentVector Algebra | Vector DiagramRelationship of Line and Phase Voltages and Currents in a Star Connected SystemVector Diagram | Three Phase Vector DiagramTypes of resistor Carbon Composition and Wire Wound ResistorVaristor Metal Oxide Varistor is nonlinear ResistorCarbon Composition ResistorWire Wound ResistorVariable Resistors | Defination, Uses and Types of Variable ResistorsLight Dependent Resistor | LDR and Working Principle of LDRSource of Electrical EnergyVoltage SourceIdeal Dependent Independent Voltage Current SourceVoltage or Electric Potential DifferenceVoltage in SeriesVoltage in ParallelVoltage Drop CalculationVoltage DividerVoltage MultiplierVoltage DoublerVoltage RegulatorVoltage FollowerVoltage Regulator 7805Voltage to Current ConverterNew Articles Electrical and Electronics Engineering BooksWater MeterAir MeterDigital PotentiometersBasic Construction of Wind Turbine