Skin Effect in Transmission Lines

Skin Effect

The phenomena arising due to unequal distribution of current over the entire cross section of the conductor being used for long distance power transmission is referred as the skin effect in transmission lines. Such a phenomena does not have much role to play in case of a very short line, but with increase in the effective length of the conductors, skin effect increases considerably. So the modifications in line calculation needs to be done accordingly. The distribution of current over the entire cross section of the conductor is quite uniform in case of a DC system. But what we are using in the present era of power system engineering is predominantly an alternating current system, where the current tends to flow with higher density through the surface of the conductors (i.e skin of the conductor), leaving the core deprived of necessary number of electrons.

In fact there even arises a condition when absolutely no current flows through the core, and concentrating the entire amount on the surface region, thus resulting in an increase in the effective electrical resistance of the conductor. This particular trend of an AC transmission system to take the surface path for the flow of current depriving the core is referred to as the skin effect in transmission lines.

Why Skin Effect Occurs in Transmission Lines?

Having understood the phenomena of skin effect let us now see why this arises in case of an AC system. To have a clear understanding of that look into the cross sectional view of the conductor during the flow of alternating current given in the diagram below.
Let us initially consider the solid conductor to be split up into a number of annular filaments spaced infinitely small distance apart, such that each filament carries an infinitely small fraction of the total current.
Like if the total current = I
Lets consider the conductor to be split up into n filament carrying current ā€˜iā€™ such that I = n i.
Now during the flow of an alternating current, the current carrying filaments lying on the core has a flux linkage with the entire conductor cross section including the filaments of the surface as well as those in the core. Whereas the flux set up by the outer filaments is restricted only to the surface itself and is unable to link with the inner filaments.Thus the flux linkage of the conductor increases as we move closer towards the core and at the same rate increases the inductor as it has a direct proportionality relationship with flux linkage. This results in a larger inductive reactance being induced into the core as compared to the outer sections of the conductor. The high value of reactance in the inner section results in the current being distributed in an un-uniform manner and forcing the bulk of the current to flow through the outer surface or skin giving rise to the phenomena called skin effect in transmission lines. skin effect

Factors Affecting Skin Effect in Transmission Lines

The skin effect in an ac system depends on a number of factors like:-
  1. Shape of conductor.
  2. Type of material.
  3. Diameter of the conductors.
  4. Operational frequency.


Closely Related Articles Corona Effect in Power SystemFerranti Effect in Power SystemAdvantages of Three Phase System over Single Phase SystemInductance in Single Conductor Power Transmission LineInductance in Three Phase Transmission LinePower System StabilityLoad Flow or Power Flow AnalysisTransient Stability in Power SystemFlexible AC Transmission Systems | FACTSTariff of Electricity in IndiaPower Factor | Calculation and Power Factor ImprovementInductance of Two Wire Single Phase Transmission LineAuto Reclosing Scheme of Transmission SystemLoad Flow and Y BusEqual Area CriterionSteady State StabilityMore Related Articles Electrical Power Cable Types of Overhead ConductorTesting of Electrical Power Cable | Type Test | Acceptance Test | Routine TestConductor Resistance Test of Electrical Power CablesTest for Thickness of Insulation of Power CableAnnealing Test for Wires and Conductors Tensile Test of ConductorsPersulphate Test of ConductorWrapping Test for ConductorsCapacitor Bank | Reactive Power CompensationTypes of Capacitor BankTesting of Capacitor BankSpecifications or Rating of Power Capacitor BankShunt Capacitor Switchable Capacitor Bank or Switched Capacitor BankLocation of Shunt CapacitorsResistance of EarthSystem EarthingEquipment Earthing Electrical Insulator | Insulating Material | Porcelain Glass Polymer InsulatorTypes of Electrical Insulator | Overhead InsulatorInsulation Coordination in Power SystemElectrical Insulator Testing | Cause of Insulator failureDielectric Properties of InsulationTypes of Electrical ReactorSelection of Reactor for Different ApplicationsConstruction of a Shunt ReactorTests of Shunt ReactorMeasurement of Reactance of a Shunt ReactorWinding Resistance Test of Shunt ReactorArc Suppression Coil or Petersen CoilElectrical Power Substation Engineering and LayoutElectrical Bus System and Electrical Substation LayoutMobile Substation | Portable Substation | Mobile TransformerLoad Curve | Load Duration Curve | Daily Load CurveHigh Voltage Direct Current Transmission | HVDC TransmissionElectrical Transmission Tower Types and DesignMethods of Transmission Tower ErectionBasic Concept of Transmission Tower FoundationDesign of Foundations of Transmission Towers in different SoilsElectrical Power Transmission System and NetworkTransmission Line in Power SystemVoltage in Power Electric LinesShort Transmission LineMedium Transmission LineLong Transmission LinePerformance of Transmission LineABCD Parameters of Transmission LineSag in Overhead ConductorSurge Impedance Loading or SILAdmittanceAdvantages of Bundled ConductorsBundled Conductors Used in Transmission LineGround Clearance of Different Transmission LinesNew Articles Measurement of Insulation ResistanceAmpere's Circuital LawMechanical Equivalent of HeatTrees and Cotrees of Electric NetworkDifferentiatorIntegrator
ā†‘ electrical engineering app