ONLINE ELECTRICAL ENGINEERING STUDY SITE

Schmitt Gates

We have discussed various types of logic gates, finally we are going to discuss about another type of gate that is Schmitt Gates. The logic gates about which we have discussed till now have a single input threshold voltage level. For low to high and high to low output transitions this threshold is the same and it lies somewhere between the highest low voltage level and the lowest high voltage level. And for this these logic gates might produce an erratic output which when fed with an input which is varying slowly. Suppose we are giving an ideal input signal to an inverter circuit and the response of that circuit is shown in the graph below. schmitt gate And when a practical signal is fed to the inverter the response we get is shown in the figure below. schmitt gate We can see from the diagram above that there is a small amount of noise is superimposed on the output signal. To overcome this problem a possible solution has been found which is if we differentiate the voltage levels one for low to high and other for high to low transition then this problem can be overcome. And this should be done by introducing some positive feedback in the internal gate circuitary, which we also know as the hysteresis phenomenon.

There are some logic gates which are naturally have hysteresis i.e. they have this property as built in, we don’t have to change the manufacturing procedure for them. This is mainly seen in NAND gates and inverters. These are known as Schmitt gates and they are capable of interpreting input voltage according to two threshold voltage which is for low to high and the other one is for high to low output transition. The (a) and (b) figures below shows the circuit symbols of Schmitt NAND and Schmitt inverter. schmitt gate The difference between Schmitt gates and conventional gates are that the former have the ‘hysteresis’ nature which is identical to the B-H loop for a ferromagnetic material. schmitt gate The figure above shows the typical characteristics of transfer of such a device. The difference which we can see between the two threshold levels is the hysteresis. The next figure shows the characteristics of a Schmitt inverter to a slowly varying noisy input signal. schmitt gate

Closely Related Articles OR Operation | Logical OR OperationAND Operation | Logical AND OperationLogical OR GateLogical AND GateNOT GateUniversal Gate | NAND and NOR Gate as Universal GateNAND GateDiode and Transistor NAND Gate or DTL NAND Gate and NAND Gate ICsX OR Gate and X NOR GateTransistor Transistor Logic or TTLNOR GateFan out of Logic GatesINHIBIT GateNMOS Logic and PMOS LogicLogic Families Significance and Types of Logic FamiliesMore Related Articles Digital ElectronicsBoolean Algebra Theorems and Laws of Boolean AlgebraDe Morgan Theorem and Demorgans LawsTruth Tables for Digital LogicBinary Arithmetic Binary AdditionBinary SubtractionSimplifying Boolean Expression using K MapBinary DivisionExcess 3 Code Addition and SubtractionK Map or Karnaugh MapSwitching Algebra or Boolean AlgebraBinary MultiplicationParallel SubtractorBinary Adder Half and Full AdderBinary SubstractorSeven Segment DisplayBinary to Gray Code Converter and Grey to Binary Code ConverterBinary to BCD Code ConverterAnalog to Digital ConverterDigital Encoder or Binary EncoderBinary DecoderBasic Digital CounterDigital ComparatorBCD to Seven Segment DecoderParallel AdderParallel Adder or SubtractorMultiplexerDemultiplexer555 Timer and 555 Timer WorkingLook Ahead Carry AdderBinary Number System | Binary to Decimal and Decimal to Binary ConversionBinary to Decimal and Decimal to Binary ConversionBCD or Binary Coded Decimal | BCD Conversion Addition SubtractionBinary to Octal and Octal to Binary ConversionOctal to Decimal and Decimal to Octal ConversionBinary to Hexadecimal and Hex to Binary ConversionHexadecimal to Decimal and Decimal to Hexadecimal ConversionGray Code | Binary to Gray Code and that to Binary ConversionOctal Number SystemDigital Logic Gates2′s Complement1′s ComplementASCII CodeHamming Code2s Complement ArithmeticError Detection and Correction Codes9s complement and 10s complement | SubtractionSome Common Applications of Logic GatesKeyboard EncoderAlphanumeric codes | ASCII code | EBCDIC code | UNICODELatches and Flip FlopsS R Flip Flop S R LatchActive Low S R Latch and Flip FlopGated S R Latches or Clocked S R Flip FlopsD Flip Flop or D LatchJ K Flip FlopMaster Slave Flip FlopRead Only Memory | ROMProgrammable Logic DevicesProgrammable Array LogicApplication of Flip FlopsShift RegistersBuffer Register and Controlled Buffer RegisterData Transfer in Shift RegistersSerial In Serial Out (SISO) Shift RegisterSerial in Parallel Out (SIPO) Shift RegisterParallel in Serial Out (PISO) Shift RegisterParallel in Parallel Out (PIPO) Shift RegisterUniversal Shift RegistersBidirectional Shift RegisterDynamic Shift RegisterApplications of Shift RegistersUninterruptible Power Supply | UPSConversion of Flip FlopsNew Articles Resistance Variation with TemperatureLook Ahead Carry AdderGround Clearance of Different Transmission LinesWater Meter