ONLINE ELECTRICAL ENGINEERING STUDY SITE

RLC Circuit

In RLC circuit, the most fundamental elements like resistor, inductor and capacitor are connected across a voltage supply. All these elements are linear and passive in nature; i.e. they consume energy rather than producing it and these elements have a linear relationship between voltage and current. There are number of ways of connecting these elements across voltage supply, but the most common method is to connect these elements either in series or in parallel. The RLC circuit exhibits the property of resonance in same way as LC circuit exhibits, but in this circuit the oscillation dies out quickly as compared to LC circuit due to the presence of resistor in the circuit.

Series RLC Circuit

When a resistor, inductor and capacitor are connected in series with the voltage supply, the circuit so formed is called series RLC circuit.
Since all these components are connected in series, the current in each element remains the same,  Let VR be the voltage across resistor, R.
VL be the voltage across inductor, L.
VC be the voltage across capacitor, C.
XL be the inductive reactance.
XC be the capacitive reactance. rlc circuit The total voltage in RLC circuit is not equal to algebraic sum of voltages across the resistor, the inductor and the capacitor; but it is a vector sum because, in case of resistor the voltage is in-phase with the current, for inductor the voltage leads the current by 90o and for capacitor, the voltage lags behind the current by 90o. So, voltages in each component are not in phase with each other; so they cannot be added arithmetically. The figure below shows the phasor diagram of series RLC circuit. For drawing the phasor diagram for RLC series circuit, the current is taken as reference because, in series circuit the current in each element remains the same and the corresponding voltage vectors for each component are drawn in reference to common current vector.  vector diagram of rlc circuit

The Impedance for a Series RLC Circuit

vector diagram of rlc circuit The impedance Z of a series RLC circuit is defined as opposition to the flow of current due circuit resistance R, inductive reactance, XL and capacitive reactance, XC. If the inductive reactance is greater than the capacitive reactance i.e XL > XC, then the RLC circuit has lagging phase angle and if the capacitive reactance is greater than the inductive reactance i.e XC > XL then, the RLC circuit have leading phase angle and if both inductive and capacitive are same i.e XL = XC then circuit will behave as purely resistive circuit.
We know that Where, Substituting the values

Parallel RLC Circuit

In parallel RLC Circuit the resistor, inductor and capacitor are connected in parallel across a voltage supply. The parallel RLC circuit is exactly opposite to the series RLC circuit. The applied voltage remains the same across all components and the supply current gets divided. The total current drawn from the supply is not equal to mathematical sum of the current flowing in the individual component, but it is equal to its vector sum of all the currents, as the current flowing in resistor, inductor and capacitor are not in the same phase with each other; so they cannot be added arithmetically. parallel rlc circuit Phasor diagram of parallel RLC circuit, IR is the current flowing in the resistor, R in amps.
IC is the current flowing in the capacitor, C in amps.
IL is the current flowing in the inductor, L in amps.
Is is the supply current in amps.
In the parallel RLC circuit, all the components are connected in parallel; so the voltage across each element is same. Therefore, for drawing phasor diagram, take voltage as reference vector and all the other currents i.e IR, IC, IL are drawn relative to this voltage vector. The current through each element can be found using Kirchhoff's Current Law, which states that the sum of currents entering a junction or node is equal to the sum of current leaving that node. vector diagram of rlc circuit  As shown above in the equation of impedance, Z of a parallel RLC circuit; each element has reciprocal of impedance (1 / Z) i.e. admittance, Y. So in parallel RLC circuit, it is convenient to use admittance instead of impedance.

Resonance in RLC Circuit

In a circuit containing inductor and capacitor, the energy is stored in two different ways.
  1. When a current flows in a inductor, energy is stored in magnetic field.
  2. When a capacitor is charged, energy is stored in static electric field.
The magnetic field in the inductor is built by the current, which gets provided by the discharging capacitor. Similarly, the capacitor is charged by the current produced by collapsing magnetic field of inductor and this process continues on and on, causing electrical energy to oscillate between the magnetic field and the electric field. In some cases at certain frequency called resonant frequency, the inductive reactance of the circuit becomes equal to capacitive reactance which causes the electrical energy to oscillate between the electric field of the capacitor and magnetic field of the inductor. This forms a harmonic oscillator for current. In RLC circuit, the presence of resistor causes these oscillation s to die out over period of time and it is called as the damping effect of resistor.

Formula for Resonant Frequency

During resonance, at certain frequency called resonant frequency, fr.  When resonance occurs, the inductive reactance of the circuit becomes equal to capacitive reactance, which causes the circuit impedance to be minimum in case of series RLC circuit; but when resistor, inductor and capacitor are connected in parallel, the circuit impedance becomes maximum, so the parallel RLC circuit is sometimes called as anti resonator.

Difference between Series RLC Circuit and Parallel RLC Circuit

S.NORLC SERIES CIRCUITRLC PARALLEL CIRCUIT
1Resistor, inductor and capacitor are connected in seriesResistor, inductor and capacitor are connected in parallel
2Current is same in each elementCurrent is different in all elements and the total current is equal to vector sum of each branch of current i.e Is2 = IR2 + (IC - IL)2
3Voltage across all the elements is different and the total voltage is equal to the vector sum of voltages across each component i.e Vs2 = VR2 + (VL - VC)2Voltage across each element remains the same
4For drawing phasor diagram, current is taken as reference vectorFor drawing phasor diagram, voltage is taken as reference vector
5Voltage across each element is given by : VR= IR, VL = I XL, VC = I XC Current in each element is given by: IR = V / R , IC = V / XC , IL = V / XL
6Its more convenient to use impedance for calculationsIts more convenient to use admittance for calculations
7At resonance , when XL = XC, the circuit has minimum impedanceAt resonance, when XL = XC, the circuit has maximum impedance

Equation of RLC Circuit

Consider a RLC circuit having resistor R, inductor L, and capacitor C connected in series and are driven by a voltage source V. Let Q be the charge on the capacitor and the current flowing in the circuit is I. Apply Kirchhoff's voltage law series rlc circuit  In this equation; resistance, inductance, capacitance and voltage are known quantities but current and charge are unknown quantities. We know that an current is a rate of electric charge flowing, so it is given by  Differentiating again I'(t) = Q’’ (t)  Differentiating the above equation with respect to ’t’ we get,  Now at time t = 0, V(0) = 0 and at time t = t, V(t) = Eosinωt
Differentiating with respect to ’t’ we get V'(t) = ωEocosωt
Substitute the value of V'(t) in above equation  Let us say that the solution of this equation is IP(t) = Asin(ωt - ǿ) and if IP(t) is a solution of above equation then it must satisfy this equation,  Now substitute the value of IP(t) and differentiate it we get,  Apply the formula of cos (A + B) and combine similar terms we get,  Match the coefficient of sin(ωt - φ) and cos(ωt - φ) on both sides we get,  Now we have two equations and two unknowns i.e φ and A, and by dividing the above two equations we get,  Squaring and adding above equation, we get

Analysis of RLC Circuit Using Laplace Transformation

Step 1 : Draw a phasor diagram for given circuit.
Step 2 : Use Kirchhoff's voltage law in RLC series circuit and current law in RLC parallel circuit to form differential equations in the time-domain.
Step 3 : Use Laplace transformation to convert these differential equations from time-domain into the s-domain.
Step 4 : For finding unknown variables, solve these equations.
Step 5 : Apply inverse Laplace transformation to convert back equations from s-domain into time domain.

Applications of RLC Circuit

It is used as low-pass filter, high-pass filter, band-pass filter, band-stop filter, voltage multiplier and oscillator circuit. It is used for tuning radio or audio receiver.



Comments/Feedbacks








Closely Related Articles Parity GeneratorDual NetworkTime ConstantElectric Circuit or Electrical NetworkSeries Parallel Battery CellsRL Series CircuitWhat is Inductor and Inductance | Theory of InductorThree Phase Circuit | Star and Delta SystemRL Parallel CircuitRL Circuit Transfer Function Time Constant RL Circuit as FilterConstruction of AC Circuits and Working of AC CircuitsSeries RLC CircuitParallel RLC CircuitResonance in Series RLC CircuitPlanar and Non Planar Graphs of CircuitClipping CircuitMore Related Articles Measurement of Insulation ResistancePhase Synchronizing Device or Controlled Switching DeviceElectric Current and Theory of Electricity | Heating and Magnetic EffectNature of ElectricityDrift Velocity Drift Current and Electron MobilityRMS or Root Mean Square Value of AC SignalWorking Principle of a CapacitorQuality Factor of Inductor and CapacitorTransient Behavior of CapacitorCylindrical CapacitorSpherical CapacitorCapacitors in Series and ParallelHow to Test Capacitors?Electrical Conductance Conductivity of Metal Semiconductor and Insulator | Band TheoryWhat is Electrical Resistance?Resistivity and Laws of ResistanceProperties of Electric ConductorTemperature Coefficient of ResistanceResistance Variation with TemperatureCircuit Elements - Active Passive Elements of Electrical CircuitElectrical DC Series and Parallel CircuitMagnetic FieldMagnetic FluxMagnetic PermeabilityHysteresis LoopMagnetic CircuitMagnetic SaturationEnergy Stored in a Magnetic FieldStatic Electric Field | Electrostatic Induction A Current Carrying Conductor within a Magnetic FieldMagnetic SusceptibilityHard Magnetic MaterialsSoft Magnetic MaterialsMagnetic Circuit with Air GapElectric ChargeCoulomb's Law | Explanation Statement Formulas Principle Limitation of Coulomb’s LawElectric Lines of ForceWhat is Electric Field?Electric Field Strength or Electric Field IntensityWhat is Flux? Types of Flux?Electric FluxElectric PotentialCapacitor and Capacitance | Types of CapacitorsEnergy Stored in CapacitorCharging a CapacitorDischarging a CapacitorFourier Series and Fourier TransformTrigonometric Fourier SeriesAnalysis of Exponential Fourier SeriesMutual InductanceSelf InductanceSI System of UnitsElectrical International SymbolElectric Power Single and Three Phase Power Active Reactive ApparentVector Algebra | Vector DiagramRelationship of Line and Phase Voltages and Currents in a Star Connected SystemVector Diagram | Three Phase Vector DiagramTypes of Resistor Carbon Composition and Wire Wound ResistorVaristor Metal Oxide Varistor is Nonlinear ResistorCarbon Composition ResistorWire Wound ResistorVariable Resistors | Defination, Uses and Types of Variable ResistorsLight Dependent Resistor | LDR and Working Principle of LDRVoltage SourceIdeal Dependent Independent Voltage Current SourceVoltage or Electric Potential DifferenceVoltage Drop CalculationVoltage DividerVoltage MultiplierVoltage DoublerVoltage RegulatorVoltage FollowerVoltage Regulator 7805Voltage to Current ConverterNew Articles Measurement of Insulation ResistanceAmpere's Circuital LawMechanical Equivalent of HeatTrees and Cotrees of Electric NetworkDifferentiatorIntegrator
electrical engineering app