Properties of Electric Conductor

A conductor of electricity is a material or substance which allows to flow of electric current when subjected to a potential difference. This electric current is continue to flow till the potential deference exists. For a given potential difference, the density of electric current in conductor represents how efficient a conductor is. Based on the resistivity the conductors can be classified into two categories i.e. low resistivity/high conductivity material and high resistivity/low conductivity materials.

This general properties of a conductor are listed below –In equilibrium condition the conductor exhibits the following properties –

  1. Resistance
  2. Inductance
  3. The electric filed inside the conductor is zero
  4. The charge density inside the conductor is zero
  5. Free charge exists only on the surface of the conductor
  6. At the conductor surface, the electric field is normal to the surface.

Resistance of Electric Conductor

Conductors of electricity generally possessed very low resistance for flow of electricity. Ideally the resistance of a perfect conductor is zero. However, practically the resistivity of conductors varies from low to high. The conductor having low resistivity/high conductivity are used as conductor for winding of electrical machines, for transmission lines, for electrical contact, earth wire etc. The conducting materials having high resistivity/low conductivity are used for making filaments incandescent lamp and heating elements for electric heaters, Ovens, furnaces.

Inductance of Electric Conductor

When a conductor is used on AC supply a magnetic flux is produced. Which is consists of two parts. Internal flux and external flux. The value of internal flux is very low as compare to external flux. Due to this flux linkage to conductor itself an inductance is come into picture. This inductance results in extra voltage drop in conductor. Moreover, this inductance is also effect the current distribution over the cross-section area of conductor. Due to which, current prefers to flow through outer part of cross-sectional area. This effect is called Skin effect. This current distribution over cross-sectional area is also effected by the flux linkage to conductor due to current following through nearby conductor. This is called Proximity effect These both effects Skin effect and Proximity effect exist only for AC supply. These effects do not exist for DC supply, as the flux produced by DC supply remains constant over the time.

The Electric Field Inside the Conductor is Zero

The electrical field inside a perfect conductor is zero. If the electric field exists inside the conductor, it will extract a force on electron and accelerate them. But in equilibrium condition the net force on electron is zero. Hence, electric filed does not exists inside the conductor. Means the electric field must be external to the conductor. This property of conductor make it suitable to be used for electrostatic shielding for electrical equipment.

The Charge Density Inside the Conductor is Zero

This electric charge does not exists inside the conductor. The mutual electrostatic repulsion force, between like charges i.e. electrons, demands that the electrons must be as far as possible. This electrostatic repulsion force pushes the electrons to the surface on conductor. Due to which there is no electric charge exists inside the conductor results in zero charge density inside the conductor.

Free Charge Exists Only on the Surface of the Conductor

As discussed above, the charge particle does not exist inside the conductor. Due to electrostatic repulsion force, the electrons move to outer surface of the conductor. Due to which there is no electric charge exists inside the conductor. Hence, free electric charge exits only on the surface of the conductor.

The Conductor Surface, The Electric Field is Normal to The Surface

If we go through the boundary condition of dielectric to conductor, the electric field is normal to the surface of conductor and tangent part of electric field to surface is zero. Means, the electric field intensity is normal to the surface of conductor and the tangential part of electric field intensity is zero.


Closely Related Articles Electrical Conductance Conductivity of Metal Semiconductor and Insulator | Band TheoryWhat is Electrical Resistance?Resistivity and Laws of ResistanceTemperature Coefficient of ResistanceResistance Variation with TemperatureSeries ResistanceMore Related Articles Electric Current and Theory of Electricity | Heating and Magnetic EffectNature of ElectricityDrift Velocity Drift Current and Electron MobilityElectric Current and Voltage Division RuleRMS or Root Mean Square Value of AC SignalWorking Principle of a CapacitorQuality Factor of Inductor and CapacitorTransient Behavior of CapacitorCylindrical CapacitorSpherical CapacitorCapacitors in Series and ParallelHow to Test Capacitors?Active and Passive Elements of Electrical CircuitElectrical DC Series and Parallel CircuitOhm's Law | Equation Formula and Limitation of Ohm's LawKirchhoff Current Law and Kirchhoff Voltage LawSingle and Multi Mesh AnalysisSuperposition TheoremThevenin Theorem and Thevenin Equivalent Voltage and ResistanceNorton Theorem | Norton Equivalent Current and ResistanceReciprocity TheoremNodal Analysis in Electric CircuitsMaximum Power Transfer TheoremDelta - Star transformation | Star - Delta TransformationMagnetic FieldMagnetic FluxMagnetic PermeabilityHysteresis LoopMagnetic Field and Magnetic Circuit | Magnetic MaterialsMagnetic SaturationEnergy Stored in a Magnetic FieldStatic Electric Field | Electrostatic Induction A Current Carrying Conductor Within A Magnetic FieldMagnetic SusceptibilityHard Magnetic MaterialsSoft Magnetic MaterialsMagnetic Circuit with Air GapElectric ChargeCoulombs Law | Explanation Statement Formulas Principle Limitation of Coulomb’s LawElectric Lines of ForceWhat is Electric Field?Electric Field Strength or Electric Field IntensityWhat is Flux? Types of Flux?Electric FluxElectric PotentialCapacitor and Capacitance | Types of CapacitorsEnergy Stored in CapacitorCharging a CapacitorDischarging a CapacitorFourier Series and Fourier TransformTrigonometric Fourier SeriesAnalysis of Exponential Fourier SeriesParity GeneratorElectric Circuit and Electrical Circuit ElementsSeries Parallel Battery CellsRL Series CircuitWhat is Inductor and Inductance | Theory of InductorRLC CircuitThree Phase Circuit | Star and Delta SystemRL Parallel CircuitRL Circuit Transfer Function Time Constant RL Circuit as FilterConstruction of AC Circuits and Working of AC CircuitsSeries RLC CircuitParallel RLC CircuitResistances in Series and Resistances in ParallelResonance in Series RLC CircuitPlanar and Non Planar Graphs of CircuitClipping CircuitMutual InductanceSelf InductanceSI System of UnitsElectrical International SymbolElectric Power Single and Three Phase Power Active Reactive ApparentVector Algebra | Vector DiagramRelationship of Line and Phase Voltages and Currents in a Star Connected SystemVector Diagram | Three Phase Vector DiagramTypes of Resistor Carbon Composition and Wire Wound ResistorVaristor Metal Oxide Varistor is Nonlinear ResistorCarbon Composition ResistorWire Wound ResistorVariable Resistors | Defination, Uses and Types of Variable ResistorsLight Dependent Resistor | LDR and Working Principle of LDRSource of Electrical EnergyVoltage SourceIdeal Dependent Independent Voltage Current SourceVoltage or Electric Potential DifferenceVoltage in SeriesVoltage in ParallelVoltage Drop CalculationVoltage DividerVoltage MultiplierVoltage DoublerVoltage RegulatorVoltage FollowerVoltage Regulator 7805Voltage to Current ConverterNew Articles Collecting Oil Sample from Oil Immersed Electrical EquipmentCauses of Insulating Oil DeteriorationAcidity Test of Transformer Insulating OilMagnetic FluxRing Counter