Potentiometer Working Principle of Potentiometer

This is a very basic instrument used for comparing emf two cells and for calibrating ammeter, voltmeter and watt-meter. The basic working principle of potentiometer is very very simple. Suppose we have connected two battery in head to head and tale to tale through a galvanometer. That means the positive terminals of both battery are connected together and negative terminals are also connected together through a galvanometer as shown in the figure below. potentiometer principleHere in the figure it is clear that if the voltage of both battery cells is exactly equal, there will be no circulating current in the circuit and hence the galvanometer shows null deflection. The working principle of potentiometer depends upon this phenomenon.

Now let's think about another circuit, where a battery is connected across a resistor via a switch and a rheostat as shown in the figure below, there will be a voltage drop across the resistor. As there is a voltage drop across the resistor, this portion of the circuit can be considered as a voltage source for other external circuits. That means anything connected across the resistor will get voltage. If the resistor has uniform cross section throughout its length, the electrical resistance per unit length of the resistor is also uniform throughout its length. Hence, voltage drop per unit length of the resistor is also uniform. Suppose the current through the resistor is i A and resistance per unit length of the resistor is r Ω. Then the voltage appears per unit length across the resistor would be 'ir' ans say it is v volt.

Now, positive terminal of a standard cell is connected to point A on the sliding resistor and negative terminal of the same is connected with a galvanometer. Other end of the galvanometer is in contact with the resistor via a sliding contact as shown in the figure above. By adjusting this sliding end, a point like B is found where, there is no current through the galvanometer, hence no deflection of galvanometer. That means emf of the standard cell is just balanced by the voltage drop appears across AB. Now if the distance between point A and B is L, then it can be written emf of standard cell E = Lv volt. As v (voltage drop per unit length of the sliding resistor) is known and L is measured from the scale attached to the resistor, the value of E i.e. emf of standard cell can also be calculated from the above simple equation very easily.dc potentiometerWe said earlier in this section that one of the uses of potentiometer is to compare emfs of different cells. Let's discuss how a DC potentiometer can compare emfs of two different cells. Let's think of two cells whose emf's are to be compared are joined as shown in the figure below. The positive terminals of the cells and source battery are joined together. The negative terminals of the cells are joined with the galvanometer in turn through a two way switch. The other end of the galvanometer is connected to a sliding contact on the resistor. Now by adjusting sliding contact on the resistor, it is found that the null deflection of galvanometer comes for first cell at a length of L on the scale and after positioning to way switch to second cell and then by adjusting the sliding contact, it is found that the null deflection of galvanometer comes for that cell at a length of L1 on the scale.Let's think of the first cell as standard cell and it's emf is E and second cell is unknown cell whose emf is E1. Now as per above explanation,

E = Lv volt and
L1 = L1v volt
Dividing one equation by other, we get

As the emf of the standard cell is known, hence emf of the unknown cell can easily be determined.potentiometer


Closely Related Articles Digital Frequency MeterElectrical Measuring Instruments | Types Accuracy Precision Resolution SpeedTransducer | Types of TransducerCathode Ray Oscilloscope | CROOhmmeter Working Principle of OhmmeterErrors in Measurement | Classification of ErrorsLissajous Patterns of CRO or Cathode Ray OscilloscopeFrequency Limitation of an OscilloscopePermanent Magnet Moving Coil Instrument or PMMC InstrumentCharacteristics of SensorsSignal GeneratorMoving Iron InstrumentInduction Type MetersMeasurement of Voltage Current and Frequency by OscilloscopeElectrostatic Type Instruments Construction Principle Torque EquationWhat is Low Power Factor Wattmeter ?Resistance Temperature Detector or RTD | Construction and Working PrincipleEnergy Meter with Lag Adjustment DevicesRectifier Type Instrument | Construction Principle of OperationThermistor Thermometer | Thermistor Temperature Sensor | Construction and Principle Digital Storage OscilloscopeElectrodynamometer Type WattmeterThermocouple type Instruments Construction Principle of OperationThermistor Definition Properties Construction Characteristics and Applications Double Beam OscilloscopeProtection of MetersMeasurement of Three Phase PowerBimetallic Strip ThermometerSampling OscilloscopeVarmeter | Single Phase and Polyphase VarmeterThermocouple Temperature MeasurementTemperature TransducersMegger | Working Principle Types History Uses of MeggerRadiation Pyrometer | Types Working PrincipleOptical Pyrometer | Construction and Working PrinciplePiezoelectric TransducerStrain GaugeWeston Type Frequency MeterPower Factor Meters | Electrodynamometer Type Power Factor MeterInductive TransducersPhase Sequence IndicatorAmmeter Working Principle and Types of AmmeterLinear Variable Differential Transformer LVDTOscillator TransducerDigital MultimeterInsulation Resistance Test and Polarization Index TestHartley OscillatorTan Delta Test |Loss Angle Test | Dissipation Factor TestColpitts OscillatorElectronic DC VoltmeterWorking Principle of Voltmeter and Types of VoltmeterClapp OscillatorRC Phase Shift OscillatorDigital Voltmeters Working Principle of Digital VoltmeterWien Bridge OscillatorMeasurement of Electrical EnergyGunn OscillatorEnergy Meter TestingCrystal OscillatorAC PotentiometerMonostable MultivibratorConstruction of AC Energy MeterBistable MultivibratorWatt Hour MeterCapacitance MeterWhat is an Oscillator?Vector Impedance MeterAstable MultivibratorHow to Use a Digital Multimeter?Voltage Controlled Oscillator | VCOMore Related Articles Digital PotentiometersWheatstone Bridge Circuit Theory and PrincipleKelvin Bridge Circuit | Kelvin Double BridgeMaxwell Bridge Inductance Capacitance BridgeAnderson′s Bridge | Advantages Disadvantages of Anderson′s BridgeHay′s Bridge Circuit Theory Phasor Diagram Advantages ApplicationsOwens Bridge Circuit and AdvantagesSchering Bridge Measurement of Capacitance using Schering BridgeDe Sauty BridgeHeaviside Bridge CircuitBlavier Test | Murray Loop Test | Varley Loop Test | Fisher Loop TestSensor | Types of SensorTemperature Sensor Temperature Measurement | Types of Temperature SensorVoltage SensorMeasurement of ResistanceAir MeterWater MeterFlow MeasurementFlow MeterNew Articles Acidity Test of Transformer Insulating OilMagnetic FluxRing CounterDischarging a CapacitorCharging a Capacitor