ONLINE ELECTRICAL ENGINEERING STUDY SITE

Measurement of Losses in Shunt Reactor

The losses of a shunt reactor should be measured at rated voltage and frequency. But for very high voltage shunt reactor, it may be difficult to arrange so high test voltage during measurement of losses. This difficulty can be overcome, by measuring the losses of the shunt reactor at any voltage lower than the system voltage of the reactor. Then this measured loss is multiplied by the square of the ratio of rated current to the current of the reactor at applied reduced test voltage to obtain the loss at rated voltage.

As the power factor of the shunt reactor is very low, loss measurement of shunt reactor by conventional wattmeter is not very reliable, instead bridge method of measurement may be adopted for better accuracy.

The losses in various parts of the reactor cannot be segregated by this test. In order to avoid correction of test result for reference temperature, it is preferable to take the measurement when average temperature of the winding becomes equal to the reference temperature.



Closely Related Articles Types of Electrical ReactorSelection of Reactor for Different ApplicationsThree Phase Shunt ReactorConstruction of a Shunt ReactorTests of Shunt ReactorMeasurement of Reactance of a Shunt ReactorWinding Resistance Test of Shunt ReactorArc Suppression Coil or Petersen CoilMore Related Articles Electrical Power Cable Types of Overhead ConductorTesting of Electrical Power Cable | Type Test | Acceptance Test | Routine TestConductor Resistance Test of Electrical Power CablesTest for Thickness of Insulation of Power CableAnnealing Test for Wires and Conductors Tensile Test of ConductorsPersulphate Test of ConductorWrapping Test for ConductorsCapacitor Bank | Reactive Power CompensationTypes of Capacitor BankTesting of Capacitor BankSpecifications or Rating of Power Capacitor BankShunt Capacitor Switchable Capacitor Bank or Switched Capacitor BankLocation of Shunt CapacitorsResistance of EarthSystem EarthingEquipment Earthing Electrical Insulator | Insulating Material | Porcelain Glass Polymer InsulatorTypes of Electrical Insulator | Overhead InsulatorInsulation Coordination in Power SystemElectrical Insulator Testing | Cause of Insulator failureDielectric Properties of InsulationElectrical Power Substation Engineering and LayoutElectrical Bus System and Electrical Substation LayoutMobile Substation | Portable Substation | Mobile TransformerLoad Curve | Load Duration Curve | Daily Load CurveHigh Voltage Direct Current Transmission | HVDC TransmissionElectrical Transmission Tower Types and DesignMethods of Transmission Tower ErectionBasic Concept of Transmission Tower FoundationDesign of Foundations of Transmission Towers in different SoilsCorona Effect in Power SystemFerranti Effect in Power SystemAdvantages of Three Phase System over Single Phase SystemInductance in Single Conductor Power Transmission LineInductance in Three Phase Transmission LinePower System StabilityLoad Flow or Power Flow AnalysisTransient Stability in Power SystemFlexible AC Transmission Systems | FACTSTariff of Electricity in IndiaPower Factor | Calculation and Power Factor ImprovementSkin Effect in Transmission LinesInductance of Two Wire Single Phase Transmission LineAuto Reclosing Scheme of Transmission SystemLoad Flow and Y BusEqual Area CriterionSteady State StabilityElectrical Power Transmission System and NetworkTransmission Line in Power SystemVoltage in Power Electric LinesShort Transmission LineMedium Transmission LineLong Transmission LinePerformance of Transmission LineABCD Parameters of Transmission LineSag in Overhead ConductorSurge Impedance Loading or SILAdmittanceAdvantages of Bundled ConductorsBundled Conductors Used in Transmission LineGround Clearance of Different Transmission LinesNew Articles Series and Parallel Inductors Electric PowerMeasurement of Losses in Shunt ReactorThree Phase Shunt ReactorMeasurement of Insulation ResistanceAmpere's Circuital Law
electrical engineering app