01․ In given figure, the value of resistance R in Ω is
The given circuit can be simplified by replacing voltage source by equivalent current source as below,



02․ A 35 V source is connected to a series circuit of 600 Ω and R as shown. If a voltmeter of internal resistance 1.2 kΩ is connected across 600 Ω resistor, it reads 5 V. The value of R is

As the voltmeter of internal resistance 1.2 k Ω is connected across the 600 Ω resistor and it gives 5 V reading.
As supply voltage is 35 V, the voltage across resistor R is 35 - 5 = 30 V.

03․ A certain network consists of large number of ideal linear resistances, one of which is designated as R and two constant ideal source. The power consumed by R is P1 when only the first source is active and P2 when only second source is active. In both sources are active simultaneously then the power consumed by R is
When first source is active, power P1 = i12R; where i1 is the current flowing when only the first source is active.
When the second source is active, power P2 = i22R; where i2 is the current flowing when only the second source is active.
When both sources are active current flowing through R is

04․ In the circuit given, I = 1 A for Is = 0. What is the value of I for Is = 2 A ?

05․ In the circuit shown below, what is the voltage across 5 Ω resistor?
06․ For the circuit shown in the given figure the current I is given by

07․ For the circuit given in the figure the power delivered by the 2 V source is given by

When we consider the 2V voltage source the current source is open circuited and no current pass through the 3 Ohm resistor. So current in the circuit is 2/2 = 1A. So power delivered by the 2V source is V×I = 2×1 = 2W
08․ In the circuit shown in the figure, the value of Vs is 0, when I = 4 A. The value of I, when Vs = 16 V, is
09․ Consider the following circuit. In this circuit, when Vs = 3 V, I = 4 A, what is the value of I when Vs = 12 V?

10․ In the figure given, the value of R is
<<<4041424344>>>