electrical4u.com logo Home MCQ Engineering Calculators Videos Basic Electrical Circuit Theories Electrical Laws Materials Batteries Illumination Generation Transmission Distribution Switchgear Protection Measurement Control System Utilities Safety Transformer Motor Generator Electrical Drives Electronics Devices Power Electronics Digital Electronics Biomedical Instrumentation

Digital Potentiometers

Published on 24/2/2012 & updated on 8/12/2018
Potentiometers are three terminal device, two fixed end terminals and one wiper terminal which is used to vary the output voltage. It has various applications, such as, calibrating a system, adjusting offset voltage, tuning filters, controlling screen brightness, controlling sound volume and many more. However mechanical potentiometers suffer from some serious disadvantages which make it unsuitable for applications where precision is inevitable. Size, wiper contamination, mechanical wear, resistance drift, sensitivity to vibration, humidity, etc. are some of the main disadvantages of a mechanical potentiometer. Hence to overcome these drawbacks digital potentiometer is more common in applications since it provides higher accuracy.

Construction of Digital Potentiometers

The circuit of a digital potentiometer consists of two parts, first the resistive element along with electronic switches and second the control circuit of the wiper. The figure below shows both the part respectively.construction of digital potentiometers digital potentiometers The first part is an array of resistors, and each node is connected to a common point W, except the endpoints A and B, via a two-way electronic switch. The terminal W is the wiper terminal. Each of the switches is designed using CMOS technology and only one of the switches out of all is in ON state at any given time of the potentiometer operation. The switch which is ON determines the potentiometer resistance and the number of switches determines the resolution of the device. Now which switch is to be made ON is controlled by the control circuit. The control circuit consists of a RDAC register which can be written digitally using interface such as SPI, I2C, up/down or can be manually controlled by push buttons or a digital encoder. The diagram above shows that of a push button controlled digital potentiometer. One button is for “UP” or increasing the resistance and the other for “DOWN” i.e. decreasing the resistance.

Related pages
Digital Potentiometers

Generally, the wiper position is at the middle switch when the digital potentiometer off. After power is switched on, depending upon our requirement we can increase or decrease the resistance by a suitable push-button operation. Besides, advanced digital potentiometers also have an inbuilt on board memory which can store the last position of the wiper. Now this memory can be of the volatile type or permanent type both, depending upon the application. For example, in the case of volume control of a device, we expect the device to remember the volume setting we used last even after we switch it on again. Hence a permanent type memory such as EEPROM is suitable here. On the other hand for systems which recalibrates the output continuously and it is not necessary to restore previous value, a volatile memory is used.

Advantages and Disadvantages of Digital Potentiometers

Now we will discuss on advantages and disadvantages of digital potentiometers.

Advantages of Digital Potentiometers

Disadvantages of Digital Potentiometers

Please Rate this Article
⚑ 0 total

New Articles
More Articles on Measurement
InstrumentMetersDigital MetersWattmeterTransducerCROOscillatorBridgeEnergy MeterSensorsPyrometer
Articles Categories
Basic Electrical
Electric Transformer
Electric Generator
Electric Motor
Electrical MCQ
Engineering Calculators
Video Lectures
Electrical Generation
Electric Transmission
Electric Protection
Electrical Measurement
Electronics Devices
Power Electronics
Digital Electronics